• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Adding or subtracting single quanta of sound

Bioengineer by Bioengineer
January 25, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Imperial College London

Researchers perform experiments that can add or subtract a single quantum of sound–with surprising results when applied to noisy sound fields.

Quantum mechanics tells us that physical objects can have both wave and particle properties. For instance, a single particle–or quantum–of light is known as a photon, and, in a similar fashion, a single quantum of sound is known as a phonon, which can be thought of as the smallest unit of sound energy.

A team of researchers spanning Imperial College London, University of Oxford, the Niels Bohr Institute, University of Bath, and the Australian National University have performed an experiment that can add or subtract a single phonon to a high-frequency sound field using interactions with laser light.

The team’s findings aid the development of future quantum technologies, such as hardware components in a future ‘quantum internet’, and help pave the way for tests of quantum mechanics on a more macroscopic scale. The details of their research are published today in the prestigious journal Physical Review Letters.

To add or subtract a single quantum of sound, the team experimentally implement a technique proposed in 2013 that exploits correlations between photons and phonons created inside a resonator. More specifically, laser light is injected into a crystalline microresonator that supports both the light and the high-frequency sound waves.

The two types of waves then couple to one another via an electromagnetic interaction that creates light at a new frequency. Then, to subtract a single phonon, the team detect a single photon that has been up-shifted in frequency. “Detecting a single photon gives us an event-ready signal that we have subtracted a single phonon,” says lead author of the project Georg Enzian.

When the experiment is performed at a finite temperature, the sound field has random fluctuations from thermal noise. Thus, at any one time, the exact number of sound quanta present is unknown but on average there will be n phonons initially.

What happens now when you add or subtract a single phonon? At first thought, you may expect this would simply change the average to n + 1 or n – 1, respectively, however the actual outcome defies this intuition. Indeed, quite counterintuitively, when you subtract a single phonon, the average number of phonons actually goes up to 2n.

This surprising result where the mean number of quanta doubles has been observed for all-optical photon-subtraction experiments and is observed for the first time outside of optics here. “One way to think of the experiment is to imagine a claw machine that you often see in video arcades, except that you can’t see how many toys there are inside the machine. Before you agree to play, you’ve been told that on average there are n toys inside but the exact number changes randomly each time you play. Then, immediately after a successful grab with the claw, the average number of toys actually goes up to 2n,” describes Michael Vanner, Principal Investigator of the Quantum Measurement Lab at Imperial College London.

It’s important to note that this result certainly does not violate energy conservation and comes about due to the statistics of thermal phonons.

The team’s results, combined with their recent experiment that reported strong coupling between light and sound in a microresonator, open a new path for quantum science and technology with sound waves.

###

Media Contact
Hayley Dunning
[email protected]

Original Source

https://www.imperial.ac.uk/news/212654/adding-subtracting-single-quanta-sound/

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.126.033601

Tags: AcousticsChemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Harness Electrochemistry to Enhance Nuclear Fusion Rates

Scientists Harness Electrochemistry to Enhance Nuclear Fusion Rates

August 21, 2025
Groundbreaking Supernova Discovery Unveils the Inner Secrets of a Dying Star

Groundbreaking Supernova Discovery Unveils the Inner Secrets of a Dying Star

August 21, 2025

New “In and Out” Mechanism Uncovers How Carbon Dioxide Interacts with Water’s Surface

August 20, 2025

What Existed Before the Big Bang?

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Human Feedback Enhances AI-Driven Robots’ Learning Speed and Skill Acquisition

Scientists Harness Electrochemistry to Enhance Nuclear Fusion Rates

Impact of Player Position on ACL Tear Risk in the NFL Revealed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.