• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Adaptive models capture complexity of the brain and behavior

Bioengineer by Bioengineer
February 1, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists reveal rich details of dynamical systems by breaking them down into simpler components which change over time

Credit: OIST, António Carlos da Costa of Vrije Universiteit Amsterdam

For the scientists that study animal behavior, even the simplest roundworm poses huge challenges. The movement of squirming worms, flocking birds and walking humans changes from moment to moment, in ways that the naked eye can’t catch. But now, researchers from the Okinawa Institute of Science and Technology Graduate University (OIST) and Vrije Universiteit Amsterdam have developed a way to parse this dynamic behavior into digestible chunks.

“Even if you just want to classify movement as moving forward, backward, or turning, you can’t be sure just by eye,” said Tosif Ahamed, an author of the study and graduate student in the OIST Biological Physics Theory Unit, led by Prof. Greg Stephens, as well as the Information Processing Biology Unit led by Prof. Ichiro Maruyama. By handing the observation over to an adaptive model, the researchers spotted subtleties they would have otherwise missed. “With this method, we don’t have to throw away any details.”

The study, published online January 17, 2019 in the Proceedings of the National Academy of Sciences of the United States of America, found that complex dynamics can be broken down into a collection of simple linear patterns. The researchers diced their data into distinct time windows based on how these patterns changed over time. By clustering time windows that appeared statistically similar, the model revealed distinct patterns in animals’ changing brain states and movement behaviors.

“You make only minimal assumptions from the start,” said Antonio C. Costa, first author of the paper and graduate student in the Department of Physics and Astronomy at Vrije Universiteit Amsterdam. “You can let the data tell you what the animal is doing. This can be powerful…and allow you to find new classes of behavior.”

Crawling – Not as Simple as it Looks

The model uncovered rich complexity underlying one of the simplest of movements: namely, crawling. Scientists can observe Caenorhabditis elegans as the worm wriggles forward, turns, or reverses its motion to crawl backward. These behaviors appear simple, but upon closer inspection, each movement contains its own variety and nuance.

There’s more than one way to crawl.

“We knew implicitly, by watching the worms, about these coarse behavioral categories.

But they’re not that simple,” said Prof. Stephens, who also holds a position at Vrije Universiteit Amsterdam. “There are more subtle behavioral states you might not see by eye.”

The data suggest that C. elegans remains poised and ready to switch behaviors at a moment’s notice. Like agile boxers, primed to bob or weave in response to their opponent’s next jab, the worms’ movement hovers on the edge of one pattern and the next. Prior research suggests that more complex creatures, such as humans, also display this adaptability. The new modeling technique allows scientists to quantify these dynamics directly.

Applications Beyond Behavior

Besides modeling behavior in C. elegans, the researchers also quantified whole brain dynamics in the worm, in neurons from the visual cortex of mice, and in the cerebral cortex of monkeys.

“It was surprising–ours is a simple approach, but it proved powerful for interpreting this variety of complex systems,” said Stephens. Dynamical systems crop up everywhere in nature, not just in the brain. Fluid mechanics, turbulence and even the collective movement of flocking birds exemplify systems that could be decoded using the new approach. This idea could also be combined with machine learning methods to classify videos as we do still images, which remains a major challenge in the field.

“Once you can describe dynamics in a principled way, you can apply the technique to many systems.”

###

Media Contact
Kaoru Natori
[email protected]
098-966-2389

Original Source

https://www.oist.jp/news-center/news/2019/1/21/adaptive-models-capture-complexity-brain-and-behavior

Related Journal Article

http://dx.doi.org/10.1073/pnas.1813476116

Tags: BehaviorBioinformaticsBiologyMathematics/StatisticsSystems/Chaos/Pattern Formation/Complexity
Share12Tweet8Share2ShareShareShare2

Related Posts

Once Tadpoles Lose Their Lungs, They Never Regrow Them, Scientists Find

Once Tadpoles Lose Their Lungs, They Never Regrow Them, Scientists Find

October 27, 2025
Cloud Relay Boosts Blockchain Logging for IoT Fermentation

Cloud Relay Boosts Blockchain Logging for IoT Fermentation

October 27, 2025

How Uptake of DNA Fragments from Dying Cells Could Transform Mammalian Evolution and Genomics

October 27, 2025

Scientists Uncover Mechanism Behind Glucocorticoid Receptor Complexity

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neonatal Car Seat Test: Heart and Oxygen Study

Double-Dose Furmonertinib: Efficacy in EGFR Ex20ins NSCLC

Chronic Nicotine’s Impact on Adolescent Stress and Brain Chemistry

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.