• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Activity in a room stirs up nanoparticles left over from consumer sprays

Bioengineer by Bioengineer
April 30, 2024
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Common household products containing nanoparticles – grains of engineered material so miniscule they are invisible to the eye – could be contributing to a new form of indoor air pollution, according to a Rutgers study.

Silver nanoparticle

Credit: Mainelis Lab/Rutgers University

Common household products containing nanoparticles – grains of engineered material so miniscule they are invisible to the eye – could be contributing to a new form of indoor air pollution, according to a Rutgers study.

In a study published in the journal Science of the Total Environment, a team of Rutgers researchers found people walking through a space, where a consumer product containing nanoparticles was recently sprayed, stirred residual specks off carpet fibers and floor surfaces, projecting them some three to five feet in the air. A child playing on the floor nearby would be more greatly affected than the adult, experiments showed.

“If an adult is walking in a room, and steps on some of these deposited particles, we found that the particles will be re-suspended in the air and rise as high as that person’s breathing zone,” said Gediminas Mainelis, a professor in the Department of Environmental Science at Rutgers School of Environmental and Biological Sciences, who led the study. “A child playing on the floor inhales even more because the concentrations of particles are greater closer to the ground.”

While it’s still too early to gauge the long-term effects of these particles on people’s health, Mainelis said the results are important to contemplate. “At this point, it’s more about increasing awareness so that people know just what they are using,” he said.

A nanoparticle is a fleck of material ranging in size approximately between 1 and 100 nanometers. A nanometer is one-billionth of a meter. The human eye only can see particles larger than ~50,000 nanometers. A sheet of office paper is about 100,000 nanometers thick.

Nanoparticles are in a wide range of popular household products such as cleaners, disinfectants, sunscreen, hairsprays, and cosmetic mists and powders.

Nanomaterials, often made from silver, copper or zinc, have become widely used in industry because of the unusual properties they exhibit when manipulated on a microscopic level.

Scientists have found particles altered at the “nanoscale” can differ in important ways from the properties exhibited by the material in bulk. Some nanoparticles are stronger or have different magnetic properties compared with other forms or sizes of the same material. They can conduct heat or electricity more efficiently. They’ve been found to become more chemically reactive, reflect light better or change color.

Since nanoparticles differ substantially from the properties of the same material in aggregated form, researchers worry that nanoparticles may differ in terms of being more strongly toxic, with consequences for human health.

“There is very limited knowledge of the potential for exposure to nanoparticles from consumer products and resulting health effects,” said Mainelis, who has been studying these substances since 2012.

Scientists have long been familiar with the fact that pollutant particles deposited on flooring surfaces could be resuspended by walking, Mainelis said. What wasn’t known was whether particles from nanotechnology-enabled consumer sprays could be resuspended. Also, the factors affecting resuspension weren’t well understood.

To learn more, Mainelis and his team constructed an enclosed, air-controlled chamber in a section of his laboratory with both carpeting and vinyl flooring. They used a small robot to simulate the actions of a child. And, wearing Tyvek suits and respirators, they walked the surface after seven products containing nanoparticles of silver, zinc, and copper were sprayed into the air, and measured the results.

They confirmed nanoparticles were released by the tested sprays and reached the human breathing zone. They found children could be exposed to higher particle mass concentrations than adults during spraying and resuspension of deposited particles. The study also showed resuspension of particles from carpets produced a higher concentration of particles than from the vinyl flooring. The researchers also concluded that the concentration of particles resuspended by their motion depended on the product.

The research can guide individuals on approaches to protect health, Mainelis said.

“We can use this knowledge to minimize our exposures, in this case to various nanomaterials,” Mainelis said. “Overall, this work could help us understand the resulting exposures and support future studies on human exposure reduction.”
Other researchers on the study included Jie McAtee, a postdoctoral associate, and Ruikang He, a doctoral student who graduated in 2023 and is now a postdoctoral associate in China, both in the Department of Environmental Science at the Rutgers School of Environmental and Biological Science.



Journal

Science of The Total Environment

DOI

10.1016/j.scitotenv.2024.171459

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Potential exposure of adults and children to particles from resuspended nano-enabled consumer sprays

Article Publication Date

10-May-2024

COI Statement

The authors report no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

New Isoquinoline Derivatives Show Promise as Antifungal Agents

September 2, 2025

Protein Lipoylation: Key to Cancer Metabolic Therapy

September 2, 2025

REM Sleep Quality Linked to Locus Coeruleus Activity

September 2, 2025

Impact of Early Gonadectomy on Canine Frailty

September 2, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Isoquinoline Derivatives Show Promise as Antifungal Agents

Citizen Science Reveals Denmark’s Tardigrade Diversity

Transforming Secondary Aluminum Ash into Efficient Phase Change Materials

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.