• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Active implants: How gold binds to silicone rubber

Bioengineer by Bioengineer
June 13, 2017
in Biology
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Flexible electronic parts could significantly improve medical implants. However, electroconductive gold atoms usually hardly bind to silicones. Researchers from the University of Basel have now been able to modify short-chain silicones in a way, that they build strong bonds to gold atoms. The results have been published in the journal &laquoAdvanced Electronic Materials».

Ultra-thin and compliant electrodes are essential for flexible electronic parts. When it comes to medical implants, the challenge lays in the selection of the materials, which have to be biocompatible. Silicones were particularly promising for application in the human body because they resemble the surrounding human tissue in elasticity and resilience. Gold also poses an excellent electrical conductivity but does only weakly bind to silicone, which results in unstable structures.

Molecular conductive glue

An interdisciplinary research team of the Biomaterials Science Center and the Department of Chemistry at the University of Basel has developed a procedure that allows binding single gold atoms to the ends of polymer chains. This procedure makes it possible to form stable and homogeneous two-dimensional gold films on silicone membranes. Thus, for the first time, ultra-thin conductive layers on silicone rubber can be built.

The novel approach: Firstly, the thermal evaporation of organic molecules and gold atoms under high-vacuum conditions permits preparing ultra-thin layers. Secondly, their formation from individual islands to a confluent film can be monitored with atomic precision by means of ellipsometry. Using masks, the sandwich structures fabricated can convert electrical energy into mechanical work similar to human muscles.

Energized silicone rubber

These dielectric artificial muscles could simultaneously serve as pressure sensors and may, in the future even be used to harvest electrical energy from body movement. For this purpose, the silicone membranes are sandwiched between electrodes. The relatively soft silicone then deforms according to the applied voltage.

So far, the silicone membranes were several micrometres thick and required high voltages to reach the desired strain. These new nanometer-thin silicone membranes with ultra-thin gold electrodes allow operation through conventional batteries. To bring such a product to the market, the production costs would have to be reduced drastically. However, Dr. Tino Töpper, first author of the study, is optimistic: &laquoThe perfect experimental control during the fabrication process of the nanometer-thin sandwich structures is a sound basis for long-term stability – a key prerequisite for medical applications».

###

Media Contact

Prof. Dr. Bert Müller
[email protected]
0041-612-075-431
@UniBasel_en

http://www.unibas.ch/

http://dx.doi.org/10.1002/aelm.201700073

############

Story Source: Materials provided by Scienmag

Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.