• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Abnormal vision in childhood can affect brain functions

Bioengineer by Bioengineer
October 12, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team has discovered that abnormal vision in childhood can affect the development of higher-level brain areas responsible for things such as attention.

The researchers from the University of Waterloo, University of British Columbia, and the University of Auckland uncovered differences in how the brain processes visual information in patients with various types of lazy eye. In doing so, they are the first to demonstrate that the brain can divert attention away from a lazy eye when both eyes are open.

"Current treatments for lazy eye primarily target the early stages of visual processing within the brain," said Ben Thompson, a professor in Waterloo's School of Optometry and Vision Science."The results from this study show us that new treatments should also target higher-level processes such as attention."

Lazy eye, known as amblyopia, is a loss of vision that originates in the brain, typically when a child develops an eye turn (strabismic type) or a substantial difference in refractive error between the eyes (anisometropic type). The unequal input causes the brain to ignore information from the weaker eye during brain development. Conventionally, eyecare practitioners treated the different types of lazy eye similarly, primarily because the visual impairments experienced appeared to be the same.

In this study lead researcher, Amy Chow, and her colleagues asked patients to pay attention to a specific set of dots among a group of distracting dots, all moving on a computer screen. However, the tracked dots were only visible in one eye (the weaker eye) while the distracting dots were visible only to the other eye (the stronger eye).

For people with normal vision as well as those with anisometropic amblyopia, showing different images between the two eyes didn't matter. Both groups were able to overcome the distracting interference and track the dots successfully. Patients with strabismic amblyopia, on the other hand, were unable to direct their attention to the target dots when they were visible to only the weaker eye.

"One of the underlying reasons why some people with lazy eye have poor vision comes down to how the brain suppresses an eye," said Chow, a PhD student at the School of Optometry and Vision Science at Waterloo. "The poorer-seeing eye is open, the retina is healthy and sending information through to the brain, yet that information does not reach conscious awareness as the brain chooses not to use it."

About thirty-five thousand Canadians – one per cent of the population – have strabismic amblyopia. The condition can be corrected in childhood, but treatment efficacy can be highly variable. These findings are a stepping stone in developing better treatments of lazy eye.

###

Their paper, Dichoptic Attentive Motion Tracking is Biased Toward the Nonamblyopic Eye in Strabismic Amblyopia, appears this month in a special issue of the journal Investigative Ophthalmology and Visual Science. The project was supported by the Natural Sciences and Engineering Research Council of Canada.

Media Contact

Ryon Jones
[email protected]
@uWaterlooNews

http://www.uwaterloo.ca/

Share12Tweet7Share2ShareShareShare1

Related Posts

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.