• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Abdominal aortic aneurysm linked to dysregulated tryptophan…

Bioengineer.org by Bioengineer.org
January 30, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Georgia State University

ATLANTA–Researchers have found a link between dysregulated tryptophan metabolism and abdominal aortic aneurysm, a life-threatening vascular disease, according to a new study led by Georgia State University.

Abdominal aortic aneurysm is a permanent, localized enlargement of the abdominal aorta, the largest artery in the abdomen that provides blood to the organs and tissues of the abdomen, pelvis and legs. Because the abdominal aorta is one of four sections of the aorta, the body's main supplier of blood, a ruptured abdominal aortic aneurysm can cause life-threatening bleeding, according to the Mayo Clinic.

Abdominal aortic aneurysm occurs in up to 9 percent of adults older than 65 years of age, with about 15,000 deaths each year in the United States after rupture. Abdominal aortic aneurysms often grow slowly and without symptoms, making them difficult to detect.

There are no proven therapeutic strategies to block progression of the disease and rupture of the abdominal aorta. The only possible treatments appear to be endovascular or surgical repair. Information about the mechanisms and factors controlling abdominal aortic aneurysm is limited, so understanding the molecular basis for this disease, the goal of the Georgia State study, is imperative for the development of novel pharmacologic therapies.

The researchers established for the first time an association between dysregulated tryptophan metabolism and abdominal aortic aneurysm. Tryptophan, which can't be made by the body and must come from food, is necessary in human nutrition and used in the body to manufacture proteins and important substances, such as the neurotransmitter serotonin and the vitamin niacin.

The findings, published in the journal Circulation, suggest substances derived from the metabolism of tryptophan might be biomarkers for abdominal aortic aneurysm.

"Our data found a previously undescribed causative role for 3-hydroxyanthranilic acid (3-HAA), a product of tryptophan metabolism, in abdominal aortic aneurysm formation," said Dr. Ming-Hui Zou, director of the Center for Molecular and Translational Medicine at Georgia State and a Georgia Research Alliance Eminent Scholar in Molecular Medicine. "We believe agents that alter tryptophan metabolism may have therapeutic potential for preventing or treating abdominal aortic aneurysm. Our findings suggest that reducing 3-HAA may be a new target for treating cardiovascular diseases."

The kynurenine pathway is the major route for the metabolism of tryptophan, and other studies have found this pathway plays a key role in the increased prevalence of cardiovascular disease. The researchers sought to identify the role of the kynurenine pathway and its products in angiotensin II (AngII)-induced abdominal aortic aneurysm. AngII is a hormone that increases blood pressure by constricting the blood vessels and is the principal mediator for the development and progression of abdominal aortic aneurysm.

The researchers generated mice with genetic deficiencies by crossbreeding, and then infused the mice with AngII.

The study is the first to show that genetic deletion of indoleamine 2,3-dioxygenase (IDO) or the decrease in the gene expression of kynureninase (KNU) in the body restrained AngII-induced abdominal aortic aneurysm in mice deficient in apolipoprotein e.

In addition, the researchers made the discovery that 3-HAA was responsible for AngII-induced abdominal aortic aneurysm in the body.

###

Co-authors of the study include Dr. Qiongxin Wang of the University of Oklahoma Health Science Center; Drs. Ping Song, Huaiping Zhu and Imoh Okon of Georgia State; and Nan-Yang Ding and Drs. Houzao Chen and Depei Liu of the Chinese Academy of Medical Sciences and Peking Union Medical College.

The study is funded by the National Institutes of Health and Georgia Research Alliance.

Media Contact

LaTina Emerson
[email protected]
404-413-1353
@GSU_News

Georgia State University

Original Source

http://news.gsu.edu/2017/11/13/abdominal-aortic-aneurysm-linked-dysregulated-tryptophan-metabolism-study-finds/?utm_source=press_release&utm_medium=media&utm_campaign=aortic_aneurysm

Share13Tweet7Share2ShareShareShare1

Related Posts

Exercise Boosts Recovery in Pediatric Cancer Patients

October 13, 2025

Glutamine: Targeted Metabolic Therapy in Tumors

October 13, 2025

IV vs. IO Vasopressin & Epinephrine in Neonatal CPR

October 13, 2025

Multiomics Unveil Precision Biomarkers for Obesity

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1229 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exercise Boosts Recovery in Pediatric Cancer Patients

Glutamine: Targeted Metabolic Therapy in Tumors

IV vs. IO Vasopressin & Epinephrine in Neonatal CPR

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.