• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A ‘virtual’ view with a little bit of math

Bioengineer by Bioengineer
April 17, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

MU scientists advance a way to track changes in a person’s cardiovascular system

IMAGE

Credit: University of Missouri

Every heart beat sends blood flowing throughout the human body. While an electrocardiogram uses a contact approach to measure the electrical activity of the heart, a ballistocardiogram is a non-contact way of measuring the mechanical effect of the blood flow through the cardiovascular system.

Giovanna Guidoboni, Marjorie Skubic and a team at the University of Missouri are currently working to develop a standardized model to interpret the results of a ballistocardiogram that could provide an additional approach for early detection of various cardiovascular diseases. Ten years ago, Skubic’s team developed hydraulic sensors that can be placed under a bed mattress to measure a person’s heart rate and respiration rate. They noticed the waveforms were changing over time as people aged, indicating there was additional information coming from those measurements that could be used for tracking health changes.

“Right now, only five percent of the information in the ballistocardiogram is used, but if we can standardize the results, we can provide a map for understanding the underlying causes behind the real physiological motion of our bodies,” Guidoboni said. “This could help in early detection and prevention of cardiovascular diseases such as heart disease.”

Guidoboni joined Skubic’s team and created a mathematical model that allows the team to understand the additional information from the ballistocardiogram and move one step closer to a standardized model.

“Even when we stand or lie still, our mass redistributes inside our body and generates a bodily motion that can be captured with a ballistocardiogram,” Guidoboni said. “By applying our mathematical model, we can see information that we haven’t previously known about an individual’s cardiovascular system, such as the elasticity of the arteries, the contractility of the ventricles in the heart, or the viscoelasticity of the blood vessels. We built a virtual cardiovascular system by mathematically modeling the blood flow in our bodies.”

The study, “Cardiovascular function and ballistocardiogram: a relationship interpreted via mathematical modeling,” was published in IEEE Transactions on Biomedical Engineering. Both Guidoboni and Skubic are professors in the Department of Electrical Engineering and Computer Science in the MU College of Engineering. Guidoboni is also a professor of mathematics in the MU College of Arts and Science. Other authors include Moein Enayati, James Keller, Mihail Popescu, Laurel Despins and Virginia Huxley at MU; Lorenzo Sala of the UniversitĂ© of Strasbourg; Riccardo Sacco of the Politecnico di Milano; Marcela Szopos of the UniversitĂ© Paris Descartes. Funding was provided by the University of Missouri and the Center for Eldercare and Rehabilitation Technology. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies. The team would like to acknowledge the contribution of David Heise of Lincoln University in the development of the hydraulic bed sensor while he was a graduate student at MU.

###

Media Contact
Eric Stann
[email protected]

Original Source

https://nbsubscribe.missouri.edu/news-releases/2019/0417-a-virtual-view-with-a-little-bit-of-math/

Tags: Algorithms/ModelsBiomedical/Environmental/Chemical EngineeringCalculations/Problem-SolvingCardiologyComputer ScienceCritical Care/Emergency MedicineElectrical Engineering/ElectronicsInternal MedicineMathematics/Statistics
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

New Mitochondrial Genome Unveils Monodactylus sebae Insights

August 27, 2025
Identifying Genes Linked to Fat Traits in Xiang Pigs

Identifying Genes Linked to Fat Traits in Xiang Pigs

August 27, 2025

CircCOG5 Regulates Ferroptosis in Ovarian Cancer

August 27, 2025

Heat Stress Impact on Aged Hens’ Health and Performance

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cartilage Regeneration with DNA-SF Hydrogel Organoids

From Fear to Confidence: New Nurses’ Journey

Prophylactic Antibiotic Duration Influences Neonatal Surgery Infections

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.