• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A versatile photodetector assisted by photovoltaic and bolometric effects

Bioengineer by Bioengineer
November 2, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Wei Jiang, Tan Zheng, Binmin Wu, Hanxue Jiao, Xudong Wang, Yan Chen, Xiaoyu Zhang, Meng Peng, Hailu Wang, Tie Lin, Hong Shen, Jun Ge, Weida Hu, Xiaofeng Xu, Xiangjian…

Photodetectors have always paly the important role in the national economy and national defense field. The advanced photodetectors demand for the higher performance in response rate, broad spectrum, detectivity and other special functions like polarization detection and two-color detection. However, the limited exploitation of traditional materials or single detection mechanism faces the challenge of losing competitiveness. Inducing novel materials and integrating multiple detection mechanisms may create a detector with excellent comprehensive performance, and take the dominant in the next generation photodetector.

In a new paper published in Light Science & Application, a team of scientists, led by Professor Jianlu Wang from State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, China, and co-workers have developed a versatile photodetector integrating photovoltaic and bolometric effects. It is a heterostructure composed of molybdenum telluride (MoTe2) and vanadium dioxide (VO2), in which MoTe2 acts as transferable semiconductor and VO2 acts as bolometric materials.

Based on this structure, the device achieves three different functional modes including i) p-n junction, exhibits ultrasensitive detection (450 nm – 2 μm) with the dark current down to 0.2 pA and response time of 17 μs, ii) Schottky junction, work stable under extreme condition as high temperature of 400 K, iii) bolometer, shows ultrabroad spectrum detection exceeding to 10 μm. The flexible switch between three modes make it a potential candidate for next-generation photodetectors from visible to long-wave infrared radiation (LWIR). This dual-mechanism integration strategy opens up a novel development path to advanced optoelectronic devices. These scientists summarize the operation principles of their versatile photodetector:

p-n junction mode:

When the MoTe2 is transferred to the top of VO2 at room temperature, a space charge region (SCR) appears at the interface of VO2 and MoTe2 as the carriers swept out by the built-in electric field. Electron-hole pairs are generated in the SCR by electron transition under light illumination. Because of the photovoltaic effect, the electrons and holes are separated and collected by electrodes, which accounts for the source of photocurrent. To minimize the dark current, this mode are works at zero bias. The separation process is driven by built-in field, the response rare is rather fast than other detection mechanism. Additionally, VO2 is a narrow bandgap semiconductor, the p-n junction mode can response to light radiation of 2 μm.

Schottky junction mode:

VO2 is a typical phase transition material with metal-insulator-transition (MIT) near room temperature (340K). The device transforms to Schottky junction when VO2 become metallic at the temperature exceeding MIT temperature. Although the dark current is increased compared to room temperature, the device is still capable of photodetection from visible to near infrared radiation. This mode can be used industrial inspection as high as 400 K, is an extension of the traditional detector.

Bolometer mode:

VO2 is classical materials in bolometer industry because of its large temperature coefficient of resistance (TCR). As we know, when the forward bias is larger than built-in electric field, p-n junction can be considered as a resistor. Therefore, the device transforms into a bolometer. The bolometer absorbs the heat energy and is not selective to the wavelength of radiation, therefore, the device can be used to detect mid-wave infrared radiation (MWIR) and LWIR.

###

Media Contact
Jianlu Wang
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00396-3

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Pediatric Radiology Education: Our Observership Insights

Evaluating Lung Function in Cystic Fibrosis: MRI Methods

Hope for Sahara Killifish’s Rediscovery in Algeria!

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.