• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A time crystal made of giant atoms

by
July 9, 2024
in Chemistry
Reading Time: 4 mins read
0
Rydberg
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A crystal is an arrangement of atoms that repeats itself in space, in regular intervals: At every point, the crystal looks exactly the same. In 2012, Nobel Prize winner Frank Wilczek raised the question: Could there also be a time crystal – an object that repeats itself not in space but in time? And could it be possible that a periodic rhythm emerges, even though no specific rhythm is imposed on the system and the interaction between the particles is completely independent of time?

Rydberg

Credit: TU Wien

A crystal is an arrangement of atoms that repeats itself in space, in regular intervals: At every point, the crystal looks exactly the same. In 2012, Nobel Prize winner Frank Wilczek raised the question: Could there also be a time crystal – an object that repeats itself not in space but in time? And could it be possible that a periodic rhythm emerges, even though no specific rhythm is imposed on the system and the interaction between the particles is completely independent of time?

For years, Frank Wilczek’s idea has caused much controversy. Some considered time crystals to be impossible in principle, while others tried to find loopholes and realise time crystals under certain special conditions. Now, a particularly spectacular kind of time crystal has successfully been created at Tsinghua University in China, with the support from TU Wien in Austria. The team used laser light and very special types of atoms, namely Rydberg atoms, with a diameter that is several hundred times larger than normal. The results have now been published in the journal “Nature Physics”.

Spontaneous symmetry breaking

The ticking of a clock is also an example of a temporally periodic movement. However, it does not happen by itself: Someone must have wound the clock and started it at a certain time. This starting time then determined the timing of the ticks. It is different with a time crystal: according to Wilczek’s idea, a periodicity should arise spontaneously, although there is actually no physical difference between different points in time.

“The tick frequency is predetermined by the physical properties of the system, but the times at which the tick occurs are completely random; this is known as spontaneous symmetry breaking,” explains Prof Thomas Pohl from the Institute of Theoretical Physics at TU Wien.

Thomas Pohl was in charge of the theoretical part of the research work that has now led to the discovery of a time crystal at Tsinghua University in China: Laser light was shone into a glass container filled with a gas of rubidium atoms. The strength of the light signal that arrived at the other end of the container was measured.

“This is actually a static experiment in which no specific rhythm is imposed on the system,” says Thomas Pohl. “The interactions between light and atoms are always the same, the laser beam has a constant intensity. But surprisingly, it turned out that the intensity that arrives at the other end of the glass cell begins to oscillate in highly regular patterns.”

Giant atoms

The key to the experiment was to prepare the atoms in a special way: The electrons of an atom can orbit the nucleus on different paths, depending on how much energy they have. If energy is added to the outermost electron of an atom, its distance from the atomic nucleus can become very large. In extreme cases, it can be several hundred times further away from the nucleus than usual. In this way, atoms with a giant electron shell are created – so-called Rydberg atoms.

“If the atoms in our glass container are prepared in such Rydberg states and their diameter becomes huge, then the forces between these atoms also become very large,” explains Thomas Pohl. “And that in turn changes the way they interact with the laser. If you choose laser light in such a way that it can excite two different Rydberg states in each atom at the same time, then a feedback loop is generated that causes spontaneous oscillations between the two atomic states. This in turn also leads to oscillating light absorption.” All by themselves, the giant atoms stumble into a regular beat, and this beat is translated into the rhythm of the light intensity that arrives at the end of the glass container.

“We have created a new system here that provides a powerful platform for deepening our understanding of the time crystal phenomenon in a way that comes very close to Frank Wilczek’s original idea,” says Thomas Pohl. “Precise, selfsustained oscillations could be used for sensors, for example. Giant atoms with Rydberg states have already been successfully used for such techniques in other contexts.”

 



Journal

Nature Physics

DOI

10.1038/s41567-024-02542-9

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Dissipative time crystal in a strongly interacting Rydberg gas

Article Publication Date

2-Jul-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

SwRI Leads IMAP Payload Development for Upcoming Mission to Map Heliosphere Boundary

September 22, 2025
blank

Radical C–C Coupling Boosts CO₂ Electroreduction

September 22, 2025

Inside the Chemistry: Exploring the Process of Ammonia Synthesis

September 22, 2025

Deformable Particles Navigate and Settle in Microfluidic Channels

September 22, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

SwRI Leads IMAP Payload Development for Upcoming Mission to Map Heliosphere Boundary

Lipids Trigger Activation of LC3-Associated Phagocytosis: A Key Cellular Degradation Pathway

Radical C–C Coupling Boosts CO₂ Electroreduction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.