• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A solution to a hairy problem in forensic science

Bioengineer by Bioengineer
November 6, 2019
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Making hair proteomics a practical method for forensic investigation

IMAGE

Credit: N. Hanacek/NIST

In an effort to make hair comparison a more useful technique for investigating crimes, scientists at the National Institute of Standards and Technology (NIST) have developed a new way to dissolve hair proteins without destroying them. Once in solution, the protein molecules from two hairs can be analyzed and compared, yielding objective, quantitative results.

Hair can be an excellent forensic material because it lasts a long time. Even archaeological sites can yield intact hair. Compare that to DNA, which degrades relatively quickly, especially when exposed to the elements.

But the fact that hair is so durable makes it difficult to work with. Hair is made up of protein fibers, called keratins, that are braided together like wires in a cable. Those protein cables are then braided into still larger cables that are difficult to dissolve without losing the keratin.

But, said Zheng Zhang, a NIST research chemist and co-author of the study, “Our method yields enough keratin for analysis even when starting with a very small amount of hair.”

Until now, protocols for dissolving hair keratins required roughly 10 milligrams (mg) of hair, or about 100 5-centimeter (cm) strands — a quantity not likely to be found at a crime scene. The new method, recently described in the Journal of Forensic Sciences, requires only a single 5-cm strand of hair.

Methods for comparing hair proteins will still need to be validated before they can be used in court, where life and liberty may hang in the balance. But this new method for dissolving hair protein removes a major obstacle.

Forensic scientists have been analyzing hair for decades by visually comparing samples under a microscope. In the past, some experts have testified that hair from a crime scene came from a specific individual. Such claims, which may have led to innocent people being wrongly convicted, are no longer considered scientifically valid. Today, microscopic hair comparison is used in a more limited way, not to identify suspects but to rule them out.

In recent years, forensic scientists have also been analyzing a type of genetic material in hair called mitochondrial DNA. This type of DNA can help in an investigation, but unlike regular DNA, it cannot be used to identify an individual.

However, proteomics — the study of all the proteins in an organism or part of an organism, in this case, hair — can be used to identify an individual. Proteins are made up of building blocks called amino acids, which are strung together in a particular sequence, like beads on a string. In hair, those sequences vary slightly from person to person, and because they are coded in our genes, they are permanent features of our identity.

In 2016, researchers at Lawrence Livermore National Laboratory showed that these variations can be used to compare hair proteins with mathematical precision. However, extracting keratin from hair required multiple soakings, grindings and chemical treatments. Because some keratin is lost with each step, a relatively large amount of hair was needed to recover enough of it for analysis.

Through a series of trials, the NIST researchers developed a single-step method that involves heating the hair in a solution with detergent. Because the new process involves only a single step, more protein is recovered from a given amount of hair. Once the keratins are extracted, they can be analyzed using standard methods for proteomic analysis, which involves running them through an instrument called a mass spectrometer.

In addition to developing the new dissolving protocol, the researchers identified 12 new genetically determined variations in human hair. These still need to be verified with genetic studies, but, said NIST research chemist and co-author Meghan Burke, “More points of comparison will mean more precise results.”

Going forward, the researchers hope to identify additional variations in hair proteins. They are also working with geneticists at NIST to map keratin variations to the genetic sequences that give rise to them. That will allow comparisons not only of one hair to another, but of a hair to a DNA sample. In other words, if a hair is found at one crime scene and a bloodstain is found at another, investigators might be able to assess whether they came from the same individual.

“Analyzing hair proteins will allow forensic scientists to answer some very important questions that they couldn’t answer before,” Burke said.

###

Paper: Z. Zhang, M. Burke, W. Wallace, Y. Liang, S. Sheetlin, Y. Mirokhin, D. Tchekhovskoi, S. Stein. Sensitive Method for the Confident Identification of Genetically Variant Peptides in Human Hair Keratin. Journal of Forensic Sciences. Published online Oct. 31, 2019. DOI: 10.1111/1556-4029.14229

Media Contact
Rich Press
[email protected]
301-975-0501

Original Source

https://www.nist.gov/news-events/news/2019/11/solution-hairy-problem-forensic-science

Related Journal Article

http://dx.doi.org/10.1111/1556-4029.14229

Tags: BiochemistryBiologyGeneticsLaw EnforcementMolecular BiologyScience/Health and the Law
Share14Tweet9Share3ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1285 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    196 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Henna’s Healing Power: A Breakthrough Chemical from Lawsonia inermis Fights Fibrosis

ACHO: Enhancing Treatment Adherence through Digital Care

Decline in Opioid Prescriptions for Pain Management Observed in Canada

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.