• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A single parameter to describe animal locomotion

Bioengineer by Bioengineer
October 10, 2023
in Biology
Reading Time: 2 mins read
0
phase shift during swing
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers propose a single parameter that can be used to compare the locomotion of animals as disparate as large mammals and insects. Horses and mites both use legs to walk, but a horse may break a leg that unexpectedly enters a hole, whereas a hole has little effect on mite walking. The reason is the difference in the forces that dominate during locomotion at different scales and speeds. The forces that can affect a moving limb are inertia, gravity, elasticity and viscosity. In the horse, inertia dominates, and perturbations may rapidly cause disastrous changes in behavior; in contrast, in the mite, viscosity and elasticity dominate, so perturbations have minimal effects. Previous research used ratios of these forces to describe locomotion. Gregory Sutton, Nicholas Szczecinski, and colleagues combine quantitative measures for all four forces into a single dimensionless number: the phase shift () between actuator force and limb displacement, which can be expressed in terms of limb length and speed. The authors show that this parameter can be used to predict the neural control of the muscles of a wide range of animals during locomotion. The new parameter will be useful for the study of animal locomotion and the design of walking robots, according to the authors. 

phase shift during swing

Credit: Sutton et al.

Researchers propose a single parameter that can be used to compare the locomotion of animals as disparate as large mammals and insects. Horses and mites both use legs to walk, but a horse may break a leg that unexpectedly enters a hole, whereas a hole has little effect on mite walking. The reason is the difference in the forces that dominate during locomotion at different scales and speeds. The forces that can affect a moving limb are inertia, gravity, elasticity and viscosity. In the horse, inertia dominates, and perturbations may rapidly cause disastrous changes in behavior; in contrast, in the mite, viscosity and elasticity dominate, so perturbations have minimal effects. Previous research used ratios of these forces to describe locomotion. Gregory Sutton, Nicholas Szczecinski, and colleagues combine quantitative measures for all four forces into a single dimensionless number: the phase shift () between actuator force and limb displacement, which can be expressed in terms of limb length and speed. The authors show that this parameter can be used to predict the neural control of the muscles of a wide range of animals during locomotion. The new parameter will be useful for the study of animal locomotion and the design of walking robots, according to the authors. 



Journal

PNAS Nexus

Article Title

Phase shift between joint rotation and actuation reflects dominant forces and predicts muscle activation patterns

Article Publication Date

10-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.