• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A single molecule is missing and the cell world is empty

Bioengineer by Bioengineer
June 12, 2017
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © Beata Edyta Mierzwa, BeataScienceArt.com

Cells multiply by duplicating themselves: they grow, replicate their components, and finally split into two. Many diseases are related to defective cell division; cancer is one of them. Understanding mechanisms conducting this division is therefore essential in the search for cancer treatments. Researchers at the University of Geneva (UNIGE), Switzerland, in collaboration with the IMBA- Institute of Molecular Biotechnology at the Vienna BioCenter (VBC) and the Weill Cornell Medical College in New York, have turned their attention in particular to the role of ESCRT proteins, which are responsible for severing cell membranes. These proteins assemble in spirals that gradually bring about cleavage of the membrane, spirals that are constantly renewing themselves with the help of the Vps4 molecule. Without this molecule the renewal stops, eventually preventing the membrane from being severed. This research, reported in the journal Nature Cell Biology, sheds new light on the fight against cancer and HIV, both of which depend on cell division.

In a previous research, the team led by Professor Aurélien Roux of the Department of Biochemistry at the Faculty of Sciences of the UNIGE, discovered that ESCRT proteins assemble in the form of spirals, a structure that is unique amongst the many forms created by the organism's filamentous proteins. Why this unique form? During cell division, the cell contracts at its centre to separate the two daughter cells. At the end of this stage, called cytokinesis, a very thin link remains between the cells, a tube of plasma membrane – the cell's skin – called the "cytoplasmic bridge". The spirals formed by ESCRT proteins coil around the inner surface of this tube and constrict it in order to sever it, a stage called abscission. Professor Roux's team showed that these spirals behaved like the springs of a watch, suggesting a scenario wherein the more the ESCRT proteins assembled, the more tightly they were compressed.

Research conducted simultaneously in vitro and in vivo

After discovering why these molecules assembled in spirals, the UNIGE researchers examined the dynamics of the assembly. Until now scientists have thought that they assembled like Lego blocks, the proteins being added progressively to the structure without ever leaving it. In this new study, biochemists were able to invalidate this hypothesis. To do so they joined forces with the Gerlich group at IMBA, Vienna Biocenter, to conduct the experiment simultaneously in vivo (the Viennese scientists' part) and in vitro (the Genevan scientists' part).

"On our side, we observed the dynamics of the ESCRT proteins by isolating them on a flat artificial membrane that we created using lipids, onto which we placed the ESCRT protein complexes," explains Nicolas Chiaruttini, a research scientist at UNIGE. "And contrary to what we thought, the proteins do not form a rigidly fixed spiral that is compressed; instead there is a constant renewal of proteins, creating supple, mobile spirals in constant motion." Using a new imaging technique, the team led by Simon Scheuring in New York, working in collaboration with the UNIGE team, was able to directly visualize the dynamics and flexibility of these spirals. Conducting further research, the biochemists noted that this renewal cannot occur without the Vps4 molecule, which is an integral part of ESCRT protein complexes. "Vps4 is known for disassembling molecules in polymeric structures," says Aurélien Roux. "So it is the indispensable ingredient for the severing of membranes insofar as it enables the renewal of spirals."

It is worthwhile noting that the Viennese researchers reached exactly the same conclusions. "During our observations in the cell in motion, Vps4 was revealed to be necessary for the renewal of spirals," explains Beata Mierzwa, a researcher at IMBA-VBC. More importantly, the team observed that the absence or inactivation of Vps4 inhibited cell division in 50% of cases and delayed it significantly in the other 50%. Vps4 and the constant renewal of ESCRTs appear, therefore, to be essential for abscission. "It is rare to be able to conduct experiments in vivo and in vitro simultaneously, and the fact that the results coincide firmly establishes our study."

Another way to approach cancer and HIV

Cancer is characterized by excessive multiplication of diseased cells. By elucidating the role of the Vps4 molecule in cell division, researchers have decipher mechanisms that could be targeted as new treatments that would, for instance, block ESCRT protein renewal directly, thereby preventing the proliferation of the disease. Similarly, when a cell is infected by the Human Immunodeficiency Virus, virus particles bud from the membrane, then eventually break off from it to infect other cells. The virus must also sever the cell membrane in order to be released and spread the disease–a stage that is also carried out by ESCRT proteins. Here again, targeting the Vps4 molecule could prevent the virus from leaving the infected cell.

The primary role of fundamental research is not to find new drugs for cancer or AIDS traitements, but rather, by understanding how ESCRT and Vps4 participate in cell division and virus replication, "to provide knowledge essential to treat those diseases, and clues about potential interactions between treatments", concludes Aurélien Roux.

###

Media Contact

Aurélien Roux
[email protected]
41-223-793-532
@UNIGEnews

http://www.unige.ch

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Sauropus Extract Eases Lung Injury by Targeting NF-κB

August 7, 2025
blank

Tracing Siphonaptera Evolution via Pygiopsyllidae Mitogenome

August 7, 2025

Optimizing Trace Metals Boosts Tetraselmis Chuii Production

August 7, 2025

Breakthrough Discovery: Novel Vaccine Target Identified to Halt Malaria Transmission

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    75 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    41 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Develop Technique to Halt Ultrafast Silicon Melting with Precision Laser Pulses

Teens’ Nonmedical Use of Prescription ADHD Drugs Declines, Study Finds

Hex–GM2–MGL2 Axis Sustains Brain Balance

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.