• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A sharper image for proteins

Bioengineer by Bioengineer
April 28, 2022
in Chemistry
Reading Time: 3 mins read
0
Shaopeng Wang
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Proteins may be the most important and varied biomolecules within living systems. These strings of amino acids, assuming complex 3-dimensional forms, are essential for the growth and maintenance of tissue, the initiation of thousands of biochemical reactions, and the protection of the body from pathogens through the immune system. They play a central role in health and disease and are primary targets for pharmaceutical drugs.

Shaopeng Wang

Credit: The Biodesign Institute at Arizona State University

Proteins may be the most important and varied biomolecules within living systems. These strings of amino acids, assuming complex 3-dimensional forms, are essential for the growth and maintenance of tissue, the initiation of thousands of biochemical reactions, and the protection of the body from pathogens through the immune system. They play a central role in health and disease and are primary targets for pharmaceutical drugs.

To fully understand proteins and their myriad functions, researchers have developed sophisticated means to see and study them through advanced microscopy, improving light detection, imaging software, and the integration of advanced hardware systems.

In a new study, corresponding author Shaopeng Wang and his colleagues at Arizona State University describe a new technique that promises to revolutionize the imaging of proteins and other vital biomolecules, allowing these tiny entities to be visualized with unprecedented clarity and by simpler means than existing methods.

“The method we report in this study uses normal cover glass instead of gold coated cover glass, which has two advantages over our previously reported label-free single-protein imaging method, Wang says. It is compatible with fluorescence imaging for in-situ cross validation, and it reduces the light-induced heating effect that could harm the biological samples. Pengfei Zhang, an outstanding postdoctoral researcher in my group, is the technical lead of this project.”

Wang has a joint faculty position in the Biodesign Center for Bioelectronics and Biosensors and School of Biological and Health Systems Engineering.  The group’s research findings appear in the current issue of the journal Nature Communications.

The new method, known as evanescent scattering microscopy (ESM), is based on an optical property first recognized in antiquity, known as total internal reflection. This occurs when light passes from a high-refractive medium, (like glass) into a low-refractive medium (like water).

When the angle of incident light is moved away from the perpendicular (relative to the surface), it eventually reaches the “critical angle,” resulting in all the incident light being reflected, rather than passing through the second medium. (To properly illuminate biological samples, laser light is used.)

Total internal reflection produces an evanescent field, which can excite cells or molecules like proteins at the glass-water interface, when such molecules are affixed to a cover glass, allowing researchers to visualize them in startling detail.

Previous methods commonly label the biomolecules of interest with fluorescent tags known as fluorophores, to better image them. This process can interfere with the subtle interactions being observed and requires cumbersome sample preparation. The ESM technique is a label-free imaging method requiring no fluorescent dye or gold coating for sample slides.

Instead, the method exploits subtle irregularities in the surface of the cover glass to produce images of razor-sharp contrast. This is achieved by imaging the interference of evanescent light scattered by the single-molecule samples and the rough texture of the cover glass.

The use of evanescent wave scattering allows samples, including proteins, to be probed at extremely shallow depth, typically <100 microns. This allows ESM to create an optical slice, with dimensions comparable to a thin electron microscopy section.

The new study describes the use of ESM to detect four model proteins:  bovine serum albumin (BSA), mouse immunoglobulin G (IgG), human immunoglobulin A (IgA), human immunoglobulin M (IgM).

Protein-protein interactions, including the rapid binding and dissociation of individual proteins were observed in a series of experiments. Understanding such binding kinetics is essential for the design of safer and more effective drugs. The researchers also used ESM to keenly observe conformational changes in DNA, further demonstrating the power and versatility of the new method.



Journal

Nature Communications

DOI

10.1038/s41467-022-30046-8

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Evanescent Scattering Imaging of Single Protein Binding Kinetics and DNA Conformation Changes

Article Publication Date

28-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover Temperature’s Key Role in RhRu₃Ox Performance During Acidic Water Oxidation

November 6, 2025
Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

November 6, 2025

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025

Kono Honored with American Physical Society’s Isakson Prize

November 5, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dance Boosts Brain Health in Older Adults

Children’s Cardiomyopathies: MRI Insights from Experts

Alien Nudibranch: Scyphozoan Predation and Nematocyst Dynamics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 68 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.