• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A seating plan for molecules

Bioengineer by Bioengineer
June 8, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Individual pieces of a jigsaw puzzle joined together as if moved by magic – that is what material researchers of Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) imagine when they apply molecules to surfaces to produce materials for new technologies such as organic solar cells. To date, researchers knew very little about how large molecules attach themselves to surfaces and how they can be arranged. This is why the FAU research group funCOS has decided to investigate this borderland where molecules and surfaces meet. The German Research Foundation (DFG) recently approved the continuation of the research group's work until 2020 and will provide 3.5 million euros to fund it.

Understanding how molecules are arranged on surfaces is hugely important for many technologies such as, for example, the production of organic solar cells. Problems can occur if these particles are arranged incorrectly or unevenly. funCOS or 'Functional Molecular Structures on Complex Oxide Surfaces' intends to better manage molecular arrangements of the kind that can be used to capture sunlight or produce inexpensive electronic devices, to name but two examples.

The DFG research group, in which a total of 14 teams are participating, is headed by Prof. Dr. Jörg Libuda, Chair of Physical Chemistry II. Researchers and theorists from the fields of chemistry, physics and materials science are collaborating in order to solve the puzzle of molecular arrangement. And to achieve this, they need to investigate the behaviour of molecules on different surfaces and compile the research results to create a catalogue of models. Ultimately, the goal is to teach molecules where to go.

During the first research period from 2014 to 2017, the researchers worked mainly on developing a fundamental understanding of hybrid boundary surfaces with the help of simple model systems. The second funding period will be used to bridge the gap between this theoretical basis and practical conditions using real materials. This research will focus on aspects such as complex nanostructures and their interaction with realistic material environments, such as reactive gases and liquids.

###

Media Contact

Jörg Libuda
[email protected]
49-913-185-27308
@FAU_Germany

http://www.uni-erlangen.de

https://www.fau.eu/2017/06/06/news/research/a-seating-plan-for-molecules/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Male-Biased Immune Changes in Late-Onset Preeclampsia

Male-Biased Immune Changes in Late-Onset Preeclampsia

December 24, 2025
blank

Mitochondrial Recombination Fuels Rapid Fish DNA Evolution

December 24, 2025

Immune Response Differences Influence Parkinson’s Disease Progression

December 24, 2025

Unlocking Xiangyang Black Pig Genetics Through Resequencing

December 24, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Powered Essay Scoring: Deep Learning Meets IoT

Computer Vision Syndrome: Impact on Nursing Students’ Sleep

Phosphorylation Patterns in TCM Syndromes of Fatigue

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.