• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A seating plan for molecules

Bioengineer by Bioengineer
June 8, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Individual pieces of a jigsaw puzzle joined together as if moved by magic – that is what material researchers of Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) imagine when they apply molecules to surfaces to produce materials for new technologies such as organic solar cells. To date, researchers knew very little about how large molecules attach themselves to surfaces and how they can be arranged. This is why the FAU research group funCOS has decided to investigate this borderland where molecules and surfaces meet. The German Research Foundation (DFG) recently approved the continuation of the research group's work until 2020 and will provide 3.5 million euros to fund it.

Understanding how molecules are arranged on surfaces is hugely important for many technologies such as, for example, the production of organic solar cells. Problems can occur if these particles are arranged incorrectly or unevenly. funCOS or 'Functional Molecular Structures on Complex Oxide Surfaces' intends to better manage molecular arrangements of the kind that can be used to capture sunlight or produce inexpensive electronic devices, to name but two examples.

The DFG research group, in which a total of 14 teams are participating, is headed by Prof. Dr. Jörg Libuda, Chair of Physical Chemistry II. Researchers and theorists from the fields of chemistry, physics and materials science are collaborating in order to solve the puzzle of molecular arrangement. And to achieve this, they need to investigate the behaviour of molecules on different surfaces and compile the research results to create a catalogue of models. Ultimately, the goal is to teach molecules where to go.

During the first research period from 2014 to 2017, the researchers worked mainly on developing a fundamental understanding of hybrid boundary surfaces with the help of simple model systems. The second funding period will be used to bridge the gap between this theoretical basis and practical conditions using real materials. This research will focus on aspects such as complex nanostructures and their interaction with realistic material environments, such as reactive gases and liquids.

###

Media Contact

Jörg Libuda
[email protected]
49-913-185-27308
@FAU_Germany

http://www.uni-erlangen.de

https://www.fau.eu/2017/06/06/news/research/a-seating-plan-for-molecules/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Scientists Uncover New ‘Hook’ Mechanism in Motor Proteins That Ensures Precise Neuronal Cargo Transport

November 6, 2025
Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

November 6, 2025

New Evolutionary Classification of Rare CRISPR–Cas Variants

November 6, 2025

European Research Council Awards €10M Synergy Grant to RODIN Project Exploring Cells as Architects of Next-Generation Biomaterials

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CMTR2 Mutation in Lung Cancer Reveals Therapy Targets

Two Residues Enable Symbiotic Nitrogen Immunity

Transforming Sea Star Biomass into Whiteleg Shrimp Feed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.