• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A safe optical fiber for delivering light and drugs into the body

Bioengineer by Bioengineer
October 11, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dingying Shan / Chenji Zhang / Penn State

A flexible, biodegradable optical fiber that can deliver light into the body for medical applications is the latest work of a collaboration between electrical engineers and biomaterials engineers in Penn State's Materials Research Institute. The ability to deliver light into the body is important for laser surgery, drug activation, optical imaging, diagnosis of disease, and in optogenetics, the experimental field in which light is used to manipulate the function of neurons in the brain. Yet, delivering light into the body is difficult and typically requires the implantation of an optical fiber made of glass.

"The problem is that visible light can only penetrate to a certain depth, maybe hundreds of microns," said Jian Yang, professor of biomedical engineering, Penn State. "Near infrared light might be able to penetrate a few millimeters to a centimeter, but that is not enough to see what is going on."

Currently, people use glass fiber to get light into biological tissue at depth, but glass is brittle and is not biodegradable. It can break and damage tissue if implanted. Researchers are beginning to look toward flexible polymer fibers as a solution.

Yang previously invented a polymer based on citrate, a naturally occurring key ingredient in metabolism, that he developed as a general platform for biomedical applications, such as biodegradable bone screws for bone fixation, scaffolds for tissue engineering and nanoparticles for delivering time-released therapeutic drugs. Now, he is collaborating with Zhiwen Liu, Penn State professor of electrical engineering, using Yang's citrate-based polymer to create a step-index optical fiber for light delivery inside the body.

A step-index fiber has a core material that transmits light and a cladding that protects the core and keeps the light from escaping. Yang's lab makes and tests the polymer and then takes it to Liu's lab to turn into a fiber. Once the fiber is tested and fine-tuned, Yang's lab implants the fiber in biological tissue for testing.

"The present work demonstrates the first citrate-based flexible biodegradable polymeric step-index fiber," said Dingying Shan, a Ph.D. student in Yang's group.

Shan is co-first author on a recent paper in the journal Biomaterials, which describes their work.

"The use of the citrate-based polymers enables ultrafine tuning of refractive index differences between the core and the cladding layers," added co-first author Chenji Zhang, a recent Ph.D. graduate in Liu's group.

Because the core and cladding have identical mechanical characteristics, the optical fiber can bend and stretch without the layers pulling apart, as can happen with dissimilar materials. The two materials will also biodegrade at similar rates in the body, without harm.

"We believe this new type of biodegradable, biocompatible and low-loss step-index optical fiber can facilitate organ-scale light delivery and collection," Shan said. "And that it will become an enabling tool for diverse biomedical applications where light delivery, imaging or sensing are desired," Shan said.

"This new type of fiber creates a transparent window for peeking into a turbid tissue, and can enable new opportunities for imaging," Liu said.

As a preliminary step, the team first measured light propagation characteristics of the fiber and then used this information to demonstrate image transmission through the fiber.

"Because the material is nontoxic and biodegradable, the citrate-based fiber could be left inside the body for long periods without the need for a second surgery to remove it," Yang said. "In addition to sensing and imaging, we can add therapeutic chemicals, drugs or biological molecules for disease treatment."

###

Besides senior authors Yang and Liu, other authors on the paper "Flexible, biodegradable citrate-based polymeric step-index optical fiber" are former graduate student Surge Kalaba and current Ph.D. student Gloria Kim in Yang's group, and Nikhil Mehta, a Ph.D. graduate in Liu's group.

The National Institutes of Health supported this work.

Media Contact

A'ndrea Elyse Messer
[email protected]
814-865-9481
@penn_state

http://live.psu.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Exploring Enterococcus faecium Infections in Mexican Children

September 22, 2025

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Latest Trends in Opioid Prescribing Practices for Cancer Patients Revealed

Unlocking the Mysteries of Snapdragon: Insights into Cutting-Edge Technology

Efficient Deep-Blue CsPbBr3 LEDs Meet Rec.2020

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.