• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A roadmap for deepening understanding of a puzzling universal process

Bioengineer by Bioengineer
April 22, 2022
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A puzzling process called magnetic reconnection triggers explosive phenomena throughout the universe, creating solar flares and space storms that can take down mobile phone service and electrical power grids. Now scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have detailed a roadmap for untangling a key aspect of this puzzle that could deepen insight into the workings of the cosmos.

Collage with Hantao Ji

Credit: Photo by Elle Starkman/PPPL Office of Communications; collage by Kiran Sudarsanan.

A puzzling process called magnetic reconnection triggers explosive phenomena throughout the universe, creating solar flares and space storms that can take down mobile phone service and electrical power grids. Now scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have detailed a roadmap for untangling a key aspect of this puzzle that could deepen insight into the workings of the cosmos.

Reconnection converts the magnetic field energy to particle eruptions in astrophysical plasmas by snapping apart and explosively reconnecting the magnetic field lines — a process that occurs within what are called dissipation regions that are often enormously smaller than the regions they impact.

Stressed magnetic field

“Plasma doesn’t like reconnection,” said Hantao Ji, a PPPL physicist and Princeton University professor who is first author of a paper that details the roadmap in Nature Reviews Physics. “However, reconnection does happen when the magnetic field is sufficiently stressed,” he said.

“Dissipation scales are tiny whereas astrophysical scales are very large and can extend for millions of miles. Finding a way to bridge these scales through a multiscale mechanism is a key to solving the reconnection puzzle.”

The roadmap outlines the role of developing technologies with multiscale capabilities such as the Facility for Laboratory Reconnection Experiment (FLARE), a recently installed collaborative facility that is being upgraded and will probe facets of magnetic reconnection never before accessible to laboratory experiments. Complementing these experiments will be simulations on  coming exascale supercomputers that will be 10 times faster than  current computers. “The hope is for FLARE and exascale computing to go hand-in-hand,” Ji said.

The working theory the PPPL roadmap proposes is that multiple plasmoids, or magnetic islands, that arise from reconnection along lengthy plasma current sheets could bridge the vast range of scales. Such plasmoids would correspond more closely to the affected reconnection region, with multiscale laboratory experiments planned to provide the first tests of this theory and to evaluate competing hypotheses.

“Exascale will allow us to do more credible simulations based on high-fidelity FLARE experiments,” said PPPL physicist Jongsoo Yoo, a coauthor of the paper. The increased size and power of the new machine — its diameter will be twice that of the sports-utility-vehicle-sized Magnetic Reconnection Experiment (MRX), PPPL’s long-standing laboratory experiment  — and will enable scientists to replicate reconnection in nature more faithfully.

“FLARE can access wider astrophysical regimes than MRX with multiple reconnection points and measure the field geometry during reconnection,” said William Daughton, a computational scientist at Los Alamos National Laboratory and a coauthor of the paper. “Understanding this physics is important for predicting how reconnection proceeds in solar flares,” he said.

Key challenge

A key challenge to the coming experiments will be innovating new high-resolution diagnostic systems free from restrictive assumptions. Once developed these systems will enable FLARE to build upon satellite sightings such as those produced by the Magnetospheric Multiscale mission, a fleet of four spacecraft launched in 2015 to study reconnection in the magnetosphere, the magnetic field that surrounds the Earth.

“Progress in understanding multiscale physics critically depends on innovation and efficient implementation of such diagnostics systems in the coming decade,” the paper said. The new findings will address open questions that include:

• How exactly does reconnection start?

• How are explosive plasma particles heated and accelerated?

• What role does reconnection play in related processes such as turbulence and space shocks?

Overall, “The paper lays out plans to provide the entire space physics and astrophysics communities with methods to solve the multiscale problem,” Yoo said. Such a solution would mark a major step toward a more complete understanding of magnetic reconnection in large systems throughout the universe.

Support for this work comes from the DOE Office of Science. Coauthors include Jonathan Jara-Almonte of PPPL and Ari Le and Adam Stanier of Los Alamos National Laboratory.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit energy.gov/science.



Journal

Nature Reviews Physics

DOI

10.1038/s42254-021-00419-x

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Magnetic reconnection in the era of exascale computing and multiscale experiments

Article Publication Date

7-Feb-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Senior Residents’ Views on Teaching in Primary Care

BFGF Protects Ovaries from CTX Toxicity via Signaling

Continuous Tracking of Left Ventricular dP/dtmax

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.