• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A review of solid-state lithium metal batteries through in-situ solidification

Bioengineer by Bioengineer
January 30, 2024
in Chemistry
Reading Time: 2 mins read
0
A review of solid-state lithium metal batteries through in-situ solidification
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This review is led by Prof. Qiang Zhang and Prof. Chen-Zi Zhao (Department of Chemical Engineering, Tsinghua University). The review was indicated forthcoming opportunities to promote the practical applications of in-situ solidification in rechargeable lithium metal batteries.

A review of solid-state lithium metal batteries through in-situ solidification

Credit: ©Science China Press

This review is led by Prof. Qiang Zhang and Prof. Chen-Zi Zhao (Department of Chemical Engineering, Tsinghua University). The review was indicated forthcoming opportunities to promote the practical applications of in-situ solidification in rechargeable lithium metal batteries.

At present, the energy density of commercial lithium-ion batteries has been approaching the limit. Liquid lithium metal batteries (LMBs) are favored for their high-energy-density (>500 Wh kg−1), but commercialization is hampered by the flammability and explosiveness of the liquid solvent and the growth of Li dendrites. Notably, solid-state LMBs, the core of which revolves around the solid-state electrolyte (SSE) can play a high-energy-density, wide operating temperature, long cycling lifetime and high-safety and other advantages, therefore, the employ of solid-state electrolyte instead of organic liquid electrolyte is a practical strategy to achieve high-performance, high-security LMBs.

“The largest challenge facing the adoption of SSE is the inherent poor solid-solid contacts in solid-state LMBs, which results in huge electrochemical polarization and inferior performance. Especially, when matched with high-areal-loading cathode, how to preserve the conformal interfaces becomes more prominent due to the larger number of pores between the electrode particles. ” Zhang says. To tackle the above issue, the emerging in-situ solidification can render the superior conformal contacts between the electrode/electrolyte interfaces, construct the fast ion transport pathway between the electrode/electrolyte and the electrode particle/particle, reduce the interfacial impedance, and improve the electrochemical performance. Markedly, solid-state LMBs based on the emerging in-situ solidification technology have great development potential.

This review addresses the safety of high-energy-density LMBs as an entry point, expounds the importance of in-situ solidification in improving safety and adaptability as well as the history of the development of in-situ solidification, and emphatically introduces the synthesis techniques of in-situ solidified polymer electrolyte. The practical application of in-situ solidification technology is promoted from the aspects of artificial interphase construction and polymer electrolyte design, respectively, which clarify and establish the importance of in-situ solidification technology in the development of high-performance and high-safety LMBs. Eventually, the design, challenges and application prospects of in-situ solidified polymer electrolyte are presented to promote the development of existing energy technologies.

See the article:

A review of solid-state lithium metal batteries through in-situ solidification. https://doi.org/10.1007/s11426-023-1866-y.



Journal

Science China Chemistry

DOI

10.1007/s11426-023-1866-y

Share12Tweet8Share2ShareShareShare2

Related Posts

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025
Photoswitchable Olefins Enable Controlled Polymerization

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

From Isolation to Depression: Sleep and Frailty Link

Healthcare Professionals’ Views on Obesity in Malaysia

Nonparametric Quantile Regression Reveals Atlantic Surfclam Size Variability

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.