• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A review of solid-state lithium metal batteries through in-situ solidification

Bioengineer by Bioengineer
January 30, 2024
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This review is led by Prof. Qiang Zhang and Prof. Chen-Zi Zhao (Department of Chemical Engineering, Tsinghua University). The review was indicated forthcoming opportunities to promote the practical applications of in-situ solidification in rechargeable lithium metal batteries.

A review of solid-state lithium metal batteries through in-situ solidification

Credit: ©Science China Press

This review is led by Prof. Qiang Zhang and Prof. Chen-Zi Zhao (Department of Chemical Engineering, Tsinghua University). The review was indicated forthcoming opportunities to promote the practical applications of in-situ solidification in rechargeable lithium metal batteries.

At present, the energy density of commercial lithium-ion batteries has been approaching the limit. Liquid lithium metal batteries (LMBs) are favored for their high-energy-density (>500 Wh kg−1), but commercialization is hampered by the flammability and explosiveness of the liquid solvent and the growth of Li dendrites. Notably, solid-state LMBs, the core of which revolves around the solid-state electrolyte (SSE) can play a high-energy-density, wide operating temperature, long cycling lifetime and high-safety and other advantages, therefore, the employ of solid-state electrolyte instead of organic liquid electrolyte is a practical strategy to achieve high-performance, high-security LMBs.

“The largest challenge facing the adoption of SSE is the inherent poor solid-solid contacts in solid-state LMBs, which results in huge electrochemical polarization and inferior performance. Especially, when matched with high-areal-loading cathode, how to preserve the conformal interfaces becomes more prominent due to the larger number of pores between the electrode particles. ” Zhang says. To tackle the above issue, the emerging in-situ solidification can render the superior conformal contacts between the electrode/electrolyte interfaces, construct the fast ion transport pathway between the electrode/electrolyte and the electrode particle/particle, reduce the interfacial impedance, and improve the electrochemical performance. Markedly, solid-state LMBs based on the emerging in-situ solidification technology have great development potential.

This review addresses the safety of high-energy-density LMBs as an entry point, expounds the importance of in-situ solidification in improving safety and adaptability as well as the history of the development of in-situ solidification, and emphatically introduces the synthesis techniques of in-situ solidified polymer electrolyte. The practical application of in-situ solidification technology is promoted from the aspects of artificial interphase construction and polymer electrolyte design, respectively, which clarify and establish the importance of in-situ solidification technology in the development of high-performance and high-safety LMBs. Eventually, the design, challenges and application prospects of in-situ solidified polymer electrolyte are presented to promote the development of existing energy technologies.

See the article:

A review of solid-state lithium metal batteries through in-situ solidification. https://doi.org/10.1007/s11426-023-1866-y.



Journal

Science China Chemistry

DOI

10.1007/s11426-023-1866-y

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

August 27, 2025
Chemically Tuning Quantum Spin–Electric Coupling in Magnets

Chemically Tuning Quantum Spin–Electric Coupling in Magnets

August 27, 2025

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Organ Preservation: Who Accesses the Data?

Prioritizing Student Mental Health: Key Insights from BMES

Revolutionizing Plant Biology: Advances in Genome Synthesis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.