• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A range of substances with antitumor properties was synthesized at RUDN University

Bioengineer by Bioengineer
October 13, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Maria Matveeva

Scientists from RUDN University have synthesized a number of new cytotoxic substances – the ones that can damage cells. In the future the results of the study can be used in cancer therapy. The compounds were obtained by domino reaction, a successive formation of several new chemical bonds. The study was published in the Synthesis journal.

In search of a cure for cancer scientists are looking for new ways to synthesize compounds similar to natural alkaloids – organic substances of plant or marine origin containing a nitrogen atom. Alkaloids of the lamellarin group – the substances derived from Lamellaria mollusks – are known to have cytotoxic and immunomodulatory (immune-regulating) activity as well as anti-inflammatory properties. Lamellarin compounds are of great interest at the moment to scientists looking for a substance with high anticancer activity.

One of the methods for synthesizing new organic compounds is the domino reaction, a process in which several new bonds are formed successively, just like dominoes put in a row fall one after another if you push the last of them. The initial stage of synthesis is crucial. The first stage of the reaction is nucleophilic addition. During this reaction the molecule is affected by a nucleophilic (Latin for "core loving") reagent, or nucleophile. Such reagents generally include particles (anions or molecules) with an unshared electron pair at an external electronic level (as, for example, in OH-, Cl-, Br- and water molecules).

Scientists used the nucleophilic addition reaction for α, β-unsaturated compounds containing not only single carbon-carbon bonds, but also double ones. The carbon atoms in the chain are numbered with the letters of the Latin alphabet: this means that the in α, β-unsaturated compounds the second and the third carbon atoms have a double bond. This process is known as Michael's addition. Domino reactions involved 1-aroyl-3,4-dihydroisoquinolines and aldehydes with a multiple bond. As a result, there was a consecutive generation of several intermediate substances – the intermediates.

During the domino reaction RUDN University chemists were able to obtain a number of pyrrolo[2,1-α]isoquinolines with an aldehyde functional group in just one step. The resulting compounds showed cytotoxic activity in a number of tumor cells (lung carcinoma cells, intestinal carcinomas, cervical adenocarcinomas and sarcoma cells) during primary bioscreening. The bioscreening was carried out by scientists from the Institute of Physiologically Active Compounds (IPAC), RAS.

"The fragment of 5,6-dihydropyrrolo[2,1-α]isoquinoline is the core for such alkaloids as cryptaustoline and cryptowoline (derived from algae), as well as lamellarins," said one of the authors of the paper Maria Matveeva, a postgraduate student in the Department of Organic Chemistry at RUDN University. "Further research will be aimed at modifying the compounds obtained in order to increase their anticancer activity."

###

Media Contact

Valeriya V. Antonova
[email protected]

http://www.rudn.ru/en/

Related Journal Article

http://dx.doi.org/10.1055/s-0036-1588486

Share12Tweet8Share2ShareShareShare2

Related Posts

Dana-Farber Unveils Innovative Diagnostic Tool Transforming Acute Leukemia Detection

September 22, 2025

Tracking Perinatal Anxiety and Depression: Insights from a Major Urban Medical Center

September 22, 2025

Introducing BAMBI: The Innovative Medical Device from Politecnico di Milano Aiming to Halt Postnatal Hemorrhages

September 22, 2025

Pyloric Index Predicts Metabolic Alkalosis in Infants

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dana-Farber Unveils Innovative Diagnostic Tool Transforming Acute Leukemia Detection

Tracking Perinatal Anxiety and Depression: Insights from a Major Urban Medical Center

Introducing BAMBI: The Innovative Medical Device from Politecnico di Milano Aiming to Halt Postnatal Hemorrhages

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.