• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A question of time

Bioengineer by Bioengineer
May 3, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo: Sascha Yousefi

A team led by the Freiburg biologists Prof. Dr. Wolfgang Schamel and Prof. Dr. Wilfried Weber conducted an experiment in which they controlled the duration of the interaction of a specific protein with T cells, a type of white blood cells, thereby showing how the immune system differentiates between self and non-self molecules. The scientists published their results in the journal eLife.

The function of the immune system is to distinguish between the body’s own cells and pathogens. To protect the body from disease, it must recognize and attack these pathogens without damaging its own cells. T cells are an important cell type of the immune system that have a central role in this process. Via their T cell receptor, they bind not only to non-self, pathogen molecules but also to their own, non-pathogenic molecules.

Exactly how T cells differentiate between self and non-self molecules is a central question in immunology. Since 1995, it has been assumed that the T cell measures how long the molecule interacts with the receptor. If a molecule binds for a long time, it is classified as a pathogen; if it binds briefly, it is self. Because it has not yet been possible to experimentally control the duration of the binding, this hypothesis could until now neither be confirmed nor refuted.

Bioengineering, the construction of biological systems, is a major field of research of the Freiburg Signalling Research Clusters of Excellence BIOSS and CIBSS. In the current T cell project, the researchers constructed a hybrid system in which components from humans, plants, bacteria and jellyfish are combined in order to equip the system with the desired properties. Through this feat of engineering, it is possible to precisely control the binding duration of the T cell receptor and a synthetic ligand – in this case a photoprotein from plants – using red light as a remote control. This use of photosensitive proteins as molecular switches is known as optogenetics. Using the OptoRobot, an optogenetic high-throughput platform, scientists have performed experiments on a large number of samples simultaneously. Thus, they have obtained accurate results and drawn meaningful conclusions for the study.

If the researchers use light conditions in which the photoprotein interacts only briefly with the T cell receptor, the T cells do not become activated. In light conditions that allow prolonged interaction, on the other hand, activation takes place. The Freiburg experiments supports the theory that T cells distinguish self and non-self, pathogenic molecules on the basis of the interaction time.

Researchers from the Clusters of Excellence BIOSS and CIBSS of the University of Freiburg, the German Cancer Research Centre and the Heidelberg University, Wageningen University in the Netherlands, and the Heinrich Heine University Düsseldorf were involved in the study. Their results provide a better understanding of how T cells differentiate between self and non-self and may help advance immunotherapy and the treatment of autoimmunity, where the immune system attacks the body’s own tissues. The new optogenetic system and robotics platform could also be applied to investigate other receptors and protein-protein interactions, and to provide unique insight into their activation.

###

Original Publication:

Yousefi, O.S., Günther, M., Hörner, M., Chalupsky, J., Wess, M., Brandl, S.M., Smith, R.W., Fleck, C., Kunkel, T., Zurbriggen, M.D., Höfer, T., Weber, W. & Schamel, W.W.A (2019): Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. In: eLife. DOI: 10.7554/eLife.42475.

https://elifesciences.org/articles/42475

Contact:

Institute of Biology III / CIBSS – Centre for Integrative Biological Signalling Studies
University of Freiburg

Media Contact
Wolfgang Schamel
[email protected]

Original Source

https://www.pr.uni-freiburg.de/pm-en/press-releases-2019/a-question-of-time?set_language=en

Related Journal Article

http://dx.doi.org/10.7554/eLife.42475

Tags: BiochemistryBiologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Epstein-Barr Virus Protein EBNA1 Drives Oncogene Activation in Cervical Cancer Cells

Epstein-Barr Virus Protein EBNA1 Drives Oncogene Activation in Cervical Cancer Cells

August 22, 2025
APS PRESS Unveils Third Edition of Cotton Industry’s Premier Diagnostic Reference

APS PRESS Unveils Third Edition of Cotton Industry’s Premier Diagnostic Reference

August 22, 2025

Metabolic Modeling Reveals Yeast Diversity for Enhanced Industrial Biotechnology

August 22, 2025

Mechanisms of Amino Acid Transport in Plants Unveiled

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling SOX2: Its Crucial Role in Prostate Cancer Progression and Therapy Resistance

Whole-Body Vibration Training Reduces Body Mass: Review

Study Finds Speed Isn’t Everything in Covalent Inhibitor Drug Development

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.