• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A PTV-based polymer enabled organic solar cells with over 16% efficiency

Bioengineer by Bioengineer
April 2, 2021
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @Science China Press

Organic solar cell (OSC) is one of the most important green energy technologies. The photovoltaic efficiencies of OSCs are closely related to the photoactive layers, which are prepared by blending electron donor and acceptor materials. With the emergence of a large number of new organic photovoltaic materials and effective molecular modification methods, the photovoltaic efficiency of OSCs has been greatly improved. Accordingly, the molecular structure of the materials is becoming much more complex with high costs, which is difficult to meet the requirements of the industrialization of OSCs. Thus, it is of great importance to develop novel photovoltaic materials with low-cost and high performance simultaneously.

Some classical conjugated polymers (such as polythiophenes, polythienylene vinylenes, polyphenylene vinylenes, etc.) in the early stage of organic photovoltaic field have simple molecular structure and great cost advantage, which play important roles in the early research of OSCs. However, the classical conjugated polymers have gradually faded out of high efficiency OSCs due to the problem that “the aggregation state and molecular energy level cannot match well with the new non-fullerene-acceptors”. Therefore, can we explore an effective molecular design strategy, which could revitalize the classic low-cost polymers with high photovoltaic performance?

Recently, the National Science Review (NSR) online published the latest research work of the research group of Professor Zhang Shaoqing of University of science and technology, Beijing and the research group of Hou Jianhui of Institute of chemistry of Chinese Academy of Sciences. Based on the classic backbone of poly(thienylene vinylene) (PTV), an ester substituted PTV derivative, PTVT-T, was designed and prepared in very few steps. A remarkable photovoltaic efficiency of 16.2% was then realized by using PTVT-T as donor material.

The key point of the molecular design strategy is that the symmetrical diester groups were introduced in the repeated segments of PTVT-T, which enable its significant aggregation effect in solution state and the molecular energy level of PTVT-T can be modulated synergistically.

In the repeat unit of PTVT-T, the introduction of the symmetrical ester substituents makes the polymer have a more stable planar conformation, which leads to a significant “aggregation effect in solution state”. As a result, nano scale phase separation morphology can be easily formed in the active layer. Low-lying Homo level is also important for designing new polymer donor materials, which enables high output voltage in the corresponding OSCs. The diester groups in PTVT-T exhibits significant electron withdrawing properties, which reduces its HOMO energy level to – 5.28 eV.

The outstanding advantages of PTVT-T are: (a) the low-cost feature enabled by the very simple chemical structure and synthesis method; (b) matched photoelectronic properties with three typical acceptor materials; (c) the corresponding OSCs have high performance and good stability.

PTVT-T show simple chemical structure and does not contain the F atom, which are commonly used in other highly efficient polymer donors. Therefore, the synthesis steps and the costs of PTVT-T are significantly lower than those of the polymers with state-of-the-art efficiencies. PTVT-T can work well with the representative acceptors, PCBM, IT-4F and eC9, showing great potential to match with new emerging acceptor materials.

Particularly, a remarkable efficiency of 16.20% can be realized by blending PTVT-T with the acceptor eC9, and the corresponding devices show good stability, i.e., the cells can maintain over 80% of the initial efficiency after continuous illumination of AM 1.5G for about 500 hours.

This work demonstrated that the conjugated polymers with simple chemical structure, especially for the classical polymers developed in the early stage of OSC, will be revitalized by rational molecular design method and realize highly efficient OSC with low-cost feature.

###

The study was published in National Science Review with the title of “Molecular design revitalizes the low cost PTV polymer for high efficiency organic solar cells”. Ren Junzhen, a laboratory technician of University of science and technology, Beijing and Institute of chemistry of Chinese Academy of Sciences, is the first author of the research article. Professor Zhang Shaoqing and Professor Hou Jianhui are the corresponding authors.

See the article:

Junzhen Ren, Pengqing Bi, Jianqi Zhang, Jiao Liu, Jingwen Wang, Ye Xu, Zhixiang Wei, Shaoqing Zhang, and Jianhui Hou

Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells

Natl Sci Rev

https://doi.org/10.1093/nsr/nwab031

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Shaoqing Zhang
[email protected]

Original Source

http://doi.org/10.1093/nsr/nwab031

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwab031

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Smart Hydrogel Emulates Skin Repair, Accelerating Healing of Diabetic Wounds

Innovative Smart Hydrogel Emulates Skin Repair, Accelerating Healing of Diabetic Wounds

November 4, 2025
Chemoenzymatic Synthesis of Lariat Lipopeptides Revolutionized

Chemoenzymatic Synthesis of Lariat Lipopeptides Revolutionized

November 4, 2025

PKU Scientists Reveal Climate Effects and Future Patterns of Hailstorms in China

November 4, 2025

IEEE Research Advances Avalanche Photodiode Design for Enhanced Ultraviolet Photodetection

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cabozantinib Alters Hormone Levels in Kidney Cancer Patients

Extranodal Extension’s Role in Oral Cancer Prognosis

Drivers of Chinese Students’ Acceptance of Traditional Medicine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.