• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A protein that promotes compatibility between chromosomes after fertilization

Bioengineer by Bioengineer
July 24, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Paulo Navarro Costa

A research team from the Center for Biomedical Research (CBMR), at the University of Algarve (UAlg), and Instituto Gulbenkian de Ciência (IGC), led by Rui Gonçalo Martinho (UAlg) and Paulo Navarro-Costa (UAlg and IGC) has identified the mechanism by which the fertilized egg balances out the differences between chromosomes inherited from the mother and the father. The study, now published in the scientific journal EMBO reports*, may pave the way for future developments in the clinical management of infertile couples.

The fertilization of an egg by a sperm cell marks the beginning of a new life. However, many of the molecular mechanisms behind this extraordinary process remain a mystery.

It is well known that mother and father pass on their genetic information in a different manner. While the maternal chromosomes in the egg are still undergoing division, the paternal chromosomes carried by the sperm have both completed their division and been substantially compacted to fit into the small volume of the sperm cell. The mechanisms through which the fertilized egg levels these differences between parental chromosomes – an essential aspect for the correct initiation of embryo development – are largely unknown.

The close partnership between the University of Algarve and IGC teams uncovered a protein called dMLL3/4 that allows the fertilized egg to ensure both the correct division of the maternal chromosomes and the unpacking of the paternal genetic information.

" dMLL3/4 is a gene expression regulator, therefore, it has the ability to instruct cells to perform different functions. We observed that dMLL3/4 promotes, still during egg development, the expression of a set of genes that will later be essential for balancing out differences between the chromosomes inherited from the mother and from the father," explains Paulo Navarro-Costa.

"These results open the door to new diagnostic approaches to female infertility, and to possible improvements in embryo culture media formulations for assisted reproduction techniques," adds Paulo Navarro-Costa.

"The dMLL3/4 protein was identified using fruit flies (Drosophila melanogaster) as a model organism, which again reinforces the importance of basic research and the use of model organisms as critical stepping-stones for translational research and the improvement of human health", concludes Rui Martinho.

###

This study was developed within the context of the laboratories of Rui Martinho (CBMR) and Jörg Becker (IGC); and was funded by Fundação para a Ciência e a Tecnologia.

*Pedro Prudêncio, Leonardo G. Guilgur, João Sobral, Jörg D. Becker, Rui G. Martinho and Paulo Navarro-Costa (2018) "The Trithorax group protein dMLL3/4 instructs the assembly of the zygotic genome at fertilization", EMBO reports (DOI: 10.15252/embr.201845728).

http://embor.embopress.org/cgi/doi/10.15252/embr.201845728

Media Contact

Ana Mena
[email protected]
351-214-407-959
@IGCiencia

http://www.igc.gulbenkian.pt

Related Journal Article

http://dx.doi.org/10.15252/embr.201845728

Share13Tweet7Share2ShareShareShare1

Related Posts

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025
blank

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025

UGA Ecologists Discover Two New Bass Species

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Next-Gen Oncology: Precision Genomics Meets Immuno-Engineering

Prostate-Specific Antigen Testing: Past, Present, Future

Bisabolol: Natural Anticancer Agent with Therapeutic Promise

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.