• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A protective human monoclonal antibody targeting a conserved site of spike glycoprotein of SARS-CoV-2 Omicron variants

Bioengineer by Bioengineer
March 1, 2024
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The ongoing COVID-19 pandemic caused by SARS-CoV-2 has caused serious damage to public health and the global economy, and one strategy to combat COVID-19 has been the development of broadly neutralizing antibodies for prophylactic and therapeutic use. The most emergency-use authorized (EUA) therapeutic monoclonal antibodies, are more likely to lose their neutralizing activities as the viral epitopes (e.g. the receptor-binding domain, RBD) within spike protein of SARS-CoV-2 they target are more prone to mutate. By contrast, the S2 subunit of spike protein, has a much lower frequency of mutation than the RBD and exhibits a high degree of homology among human SARS-like CoVs. As such, developing antibodies targeting the more conserved S2 epitopes are able to exert an incredibly broad neutralization spectrum against SARS-like CoV viruses.

A human monoclonal antibody neutralizes SARS-CoV-2 omicron variants by targeting the upstream region of spike protein HR2 motif

Credit: Suping Zhang, Shenzhen University

The ongoing COVID-19 pandemic caused by SARS-CoV-2 has caused serious damage to public health and the global economy, and one strategy to combat COVID-19 has been the development of broadly neutralizing antibodies for prophylactic and therapeutic use. The most emergency-use authorized (EUA) therapeutic monoclonal antibodies, are more likely to lose their neutralizing activities as the viral epitopes (e.g. the receptor-binding domain, RBD) within spike protein of SARS-CoV-2 they target are more prone to mutate. By contrast, the S2 subunit of spike protein, has a much lower frequency of mutation than the RBD and exhibits a high degree of homology among human SARS-like CoVs. As such, developing antibodies targeting the more conserved S2 epitopes are able to exert an incredibly broad neutralization spectrum against SARS-like CoV viruses.

 

This study is led by Dr. Suping Zhang (Shenzhen University), Dr. Zhenhong Lin (Chongqing University), and Dr Lanfeng Wang (Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences). They isolated one neutralizing mAb, called mAb-39, against SARS-CoV-2 and its variants from convalescent adult. This mAb exhibited good potency in neutralization SARS-CoV2 original strain, previous and current circulating Omicron variants (e.g. Omicron BA.1, BA.2.86, BA.4, BA.5, EG.5.1) in a cell-based assay.

 

This antibody binds to a highly conserved new epitope on the glycoprotein from SARS-CoV2. “This is very exciting!” Dr. Hang Su says, “The good activity and highly conserved epitope of this antibody suggested its potential for clinical translation”.

 

The team found the mAb-39 greatly improved the neutralizing activity of anti-RBD antibody, the same type of EUA therapeutic monoclonal antibodies, against the highly neutralization-resistant Omicron variants. The study also extended the knowledge to the neutralizing and protective epitopes of SARS-CoV-2.

 


See the article:

A human monoclonal antibody neutralizes SARS-CoV-2 omicron variants by targeting the upstream region of spike protein HR2 motif

Doi: 10.1016/j.hlife.2023.09.003



Journal

hLife

DOI

10.1016/j.hlife.2023.09.003

Article Title

A human monoclonal antibody neutralizes SARS-CoV-2 Omicron variants by targeting the upstream region of spike protein HR2 motif

Article Publication Date

9-Feb-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionary Framework Unveils Drug-Protein Interactions

August 27, 2025

Assessing Platelet Dysfunction in Circulatory Support Devices

August 27, 2025

Unveiling HERG Activator’s Action Against LQT2 Mutations

August 27, 2025

Oxidative Stress and Inflammation in PCOS: Study Insights

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hormonal Control of UV-B Resilient Crops

Revolutionary Framework Unveils Drug-Protein Interactions

Dynamic Fusion Model Enhances scRNA-seq Clustering

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.