• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A promising strategy to increase activity in antimicrobial peptides

Bioengineer by Bioengineer
April 3, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In an article published recently in Plos One, researchers from INRS-Institut Armand-Frappier Research Centre reported a strategy that could lead to the discovery of new cationic antimicrobial peptides (CAMPs) with greatly enhanced antimicrobial properties. The peptide modified for the study retained considerable activity against biofilms responsible for increasing the severity of various infections. The strategy thus holds promise for combatting multidrug resistant bacteria.

For the purpose of the study, the researchers selected a peptide–pep1037–already known for its antimicrobial potential and antibiofilm activity against Pseudomonas aeruginosa and Burkholderia, two pathogens responsible for serious complications in individuals with cystic fibrosis. The peptide was modified by adding a cysteine to the end to generate a dimer. The antimicrobial activity of the new molecule was 60 times greater than that of the original peptide.

"Our results show that the dimer is of significant interest because it has a dual potential to inhibit both bacterial and biofilm growth. It could potentially be used for therapy in combination with clinically relevant antibiotics," explained the authors of the study.

Although there are currently no clinically approved antimicrobials that target bacterial biofilms, an estimated 80% of all bacterial infections have a biofilm component. These infections are much more difficult to eradicate because they are 10-1,000 times more resistant to antibiotic treatment. The formation of biofilms is associated with severe antibiotic resistance in the lungs of patients with cystic fibrosis, among others.

To date, very few studies have reported on the effect of dimerizing cationic antimicrobial peptides by adding a cysteine, especially at the specific location modified by the researchers, i.e., at the end.

The results obtained pave the way to improving this class of antibiotics, which occur naturally in many organisms.

###

About the study

The study was conducted by Amal Thamri, Myriam Létourneau, Alex Djoboulian, David Chatenet, Eric Déziel, Annie Castonguay, and Jonathan Perreault of INRS-Institut Armand-Frappier Research Centre. The results are presented in the article "Peptide modification results in the formation of a dimer with a 60-fold enhanced antimicrobial activity," which appeared in the March 2017 issue of Plos One. The researchers received financial support from Fonds de recherche du Québec — Santé; Natural Sciences and Engineering Research Council of Canada; and Fondation Armand-Frappier. DOI: 10.371/journal.pone0173783

Media Contact

Gisèle Bolduc
[email protected]
418-654-2501
@U_INRS

Accueil

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Transforming Lab Reports: AI Takes the Lead

Transforming Lab Reports: AI Takes the Lead

December 22, 2025

Core Competencies of OR Nurses in Maritime Emergencies

December 22, 2025

Factors Behind Pediatric IV Cannula Complications in Ethiopia

December 22, 2025

Enhancing Rabbit Growth: Acoustic and Bioactive Supplement Synergy

December 22, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Transforming Lab Reports: AI Takes the Lead

Core Competencies of OR Nurses in Maritime Emergencies

Factors Behind Pediatric IV Cannula Complications in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.