• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A potential new biomarker for Alzheimer’s

Bioengineer by Bioengineer
July 19, 2023
in Health
Reading Time: 4 mins read
0
Brain section of an Alzheimer's mouse
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Alzheimer’s is considered a disease of old age, with most people being diagnosed after 65. But the condition actually begins developing out of sight many years before any symptoms emerge. Tiny proteins, known as amyloid-beta peptides, clump together in the brain to form plaques. These plaques lead to inflammation and eventually cause neuronal cell death.

Brain section of an Alzheimer's mouse

Credit: AG Wanker, Max Delbrück Center

Alzheimer’s is considered a disease of old age, with most people being diagnosed after 65. But the condition actually begins developing out of sight many years before any symptoms emerge. Tiny proteins, known as amyloid-beta peptides, clump together in the brain to form plaques. These plaques lead to inflammation and eventually cause neuronal cell death.

Interplay of proteins in the brain reveals disease mechanism

Exactly what triggers these pathological changes is still unclear. “We’re lacking good diagnostic markers that would allow us to reliably detect the disease at an early stage or make predictions about its course,” says Professor Erich Wanker, head of the Proteomics and Molecular Mechanisms of Neurodegenerative Diseases Lab at the Max Delbrück Center. Wanker and his team are studying brains with Alzheimer’s disease to understand their proteome – the interplay between all the proteins involved in the onset and course of the disease. Writing in Genome Medicine, the researchers now report on a new actor in the pathological process. Their discovery will help scientists understand the mechanisms underlying Alzheimer’s and could also serve as a marker for improved diagnostics.

To analyze changes in the proteome, Wanker’s team studies genetically modified mice. The mice have five mutations that occur in people with familial Alzheimer’s disease. The amyloid-beta plaques develop in the mice’s brains and the animals show typical symptoms, such as dementia.

New perspectives for a better understanding of Alzheimer’s

“During our analyses, we noticed that a protein called Arl8b was building up in mouse brains, along with the amyloid-beta plaques,“ says Annett Böddrich, lead author of the paper. The researchers also found accumulations of the protein in brain samples from Alzheimer’s patients.

Arl8b is associated with lysosomes, cell organelles that are involved in degrading the protein clumps. A different team of researchers recently made an interesting discovery in the nematode worm: increasing Arl8b production can degrade the plaques, which reduces the damage to nerve cells. Closer study of Arl8b could be the key to better understanding Alzheimer’s disease – and could provide a new target for therapies.

Interesting candidate for a diagnostic marker

But there’s more: “We can show that Alzheimer’s patients have significantly more Arl8b in their cerebrospinal fluid than healthy controls,” says Böddrich. Unlike brain tissue, cerebrospinal fluid is easily accessible for diagnostic studies. “This means Arl8b is an interesting candidate for a diagnostic marker,” she says.

However, the study only looked at a small group of Alzheimer’s patients, so expectations should be kept in check: “It’s too early to hope for a diagnostic test,” says Wanker. Nevertheless, he is optimistic: “Our work shows that proteomic research can provide crucial information for identifying disease mechanisms and markers, and thereby move research forward. Also, this doesn’t just apply to Alzheimer’s; it’s also relevant to other complex neurodegenerative diseases such as Parkinson’s and Huntington’s.”

 

Further information

How misfolded proteins harm our brain

Misfolding in the Alzheimer’s brain

Wanker lab

Max Delbrück Center

The Max Delbrück Center for Molecular Medicine in the Helmholtz Association (Max Delbrück Center) is one of the world’s leading biomedical research institutions. Max Delbrück, a Berlin native, was a Nobel laureate and one of the founders of molecular biology. At the locations in Berlin-Buch and Mitte, researchers from some 70 countries study human biology – investigating the foundations of life from its most elementary building blocks to systems-wide mechanisms. By understanding what regulates or disrupts the dynamic equilibrium of a cell, an organ, or the entire body, we can prevent diseases, diagnose them earlier, and stop their progression with tailored therapies. Patients should benefit as soon as possible from basic research discoveries. The Max Delbrück Center therefore supports spin-off creation and participates in collaborative networks. It works in close partnership with Charité – Universitätsmedizin Berlin in the jointly run Experimental and Clinical Research Center (ECRC), the Berlin Institute of Health (BIH) at Charité, and the German Center for Cardiovascular Research (DZHK). Founded in 1992, the Max Delbrück Center today employs 1,800 people and is funded 90 percent by the German federal government and 10 percent by the State of Berlin.

 



Journal

Genome Medicine

DOI

10.1186/s13073-023-01206-2

Article Title

A proteomics analysis of 5xFAD mouse brain regions reveals the lysosome associated protein Arl8b as a candidate biomarker for Alzheimer’s disease

Article Publication Date

19-Jul-2023

Share13Tweet8Share2ShareShareShare2

Related Posts

Wage Influencers for Swiss Nurses and Physicians Uncovered

November 6, 2025

Molecular Profiling Reveals Prostate Cancer Stromal Vulnerabilities

November 6, 2025

Tuberculosis Spread in China: COVID-19 Impact (2020–21)

November 6, 2025

Concussions Associated with Higher Risk of Severe Traffic Accidents

November 6, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

West Coast Mammal-Eating Killer Whales Comprise Two Distinct Communities That Seldom Interact

Wage Influencers for Swiss Nurses and Physicians Uncovered

Molecular Profiling Reveals Prostate Cancer Stromal Vulnerabilities

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.