• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A novel method for the fabrication of active-matrix 3-D pressure sensors

Bioengineer by Bioengineer
April 5, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UNIST

A recent study, affiliated with UNIST has created a three-dimensional, tactile sensor that could detect wide pressure ranges from human body weight to a finger touch. This new sensor with transparent features is capable of generating an electrical signal based on the sensed touch actions, also, consumes far less electricity than conventional pressure sensors.

The breakthrough comes from a research, conducted by Professor Jang-Ung Park of Materials Science and Engineering and his research team at UNIST. In the study, the research team presented a novel method of fabricating a transistor-type active-matrix pressure sensor using foldable substrates and air-dielectric layers.

Today, most transistors are created with silicon channel and silicon oxide-based dielectrics. However, these transistors have been found to be either lacking transparency or inflexible, which may hinder their utility in fabricating highly-integrated pressure sensor arrays and transparent pressure sensors.

In this regard, Professor Park's team decided to use highly-conductive and transparent graphene transistors with air-dielectric layers. The sensor can detect different types of touch-including swiping and tapping..

"Using air as the dielectric layer in graphene field-effect transistors (FETs) can significantly improve transistor performance due to the clean interface between graphene channel and air," says Professor Park. "The thickness of the air-dielectric layers is determined by the applied pressure. With that technology, it would be possible to detect pressure changes far more effectively."

A convantional touch panel, which may be included in a display device, reacts to the static electrical when pressure is applied to the monitor screen. With this method, the position on screen contacted by a finger, stylus, or other object can be easily detected using changes in pressure, but can not provide the intensity of pressure.

The research team placed graphene channel, metal nanowire electrodes, as well as an elastic body capable of trapping air on one side of the foldable substrate. Then they covered the other side of the substrate, like a lid and kept the air. In this transistor, the force pressing the elastic body is transferred to the air-dielectric layer and alters its thickness. Such changes in the thickness of the air-dielectric layer is converted into an electrical signal and transmitted via metal nanowires and the graphene channel, expressing both the position and the intensity of the pressure.

This is regarded as a promising technology as it enables the successful implementation of active-matrix pressure sensors. Moreover, when compared with the passive-matrix type, it consumes less power and has a faster response time.

It is possible to send and receive signals only by flowing electricity to the place where pressure is generated. The change in the thickness of the air dielectric layer is converted into an electrical signal to represent the position and intensity of the pressure. In addition, since all the substrates, channels, and electrode materials used in this process are all transparent, they can also be manufactured with invisible pressure sensors.

"This sensor is capable of simultaneously measuring anything from lower pressure (less than 10 kPa), such as gentle tapping to high pressure (above 2 MPa), such as human body weight," says Sangyoon Ji (Combined M.S./Ph.D. student of Materials Science and Engineering), the first co-author of the study. "It can be also applied to 3D touchscreen panels or smart running shoes that can analyze life patterns of people by measuring their weight distribution."

"This study not only solves the limitations of conventional pressure sensors, but also suggests the possibility to apply them to various fields by combining pressure sensor with other electronic devices such as display." says Professor Park.

###

The results of the study have been published in the April issue of the journal Nature Communications, a sister journal of the prestigious Nature. It has been supported by the Ministry of Science, ICT & Future Planning (MSIP) and the Ministry of Trade, Industry and Energy (MOTIE) of Korea through the National Research Foundation.

Journal Reference

Shin, S.-H. et al. "Integrated Arrays of Air-Dielectric Graphene Transistors as Transparent, Active-Matrix Pressure Sensors for Wide Pressure Ranges", Nat. Commun. 8, (2017).

Media Contact

JooHyeon Heo
[email protected]
82-522-171-223

home

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Serum Adiponectin’s Role in Diabetes and Lipid Profiles

October 21, 2025

Animal Excrement in Ghanaian Traditional Medicine Practices

October 21, 2025

BESSY II Unveils Phosphorus Chains: A One-Dimensional Material Exhibiting Unique 1D Electronic Behavior

October 21, 2025

BTRC Suppresses Glioma Growth via NFAT5/AQP4 Pathway

October 21, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1270 shares
    Share 507 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    303 shares
    Share 121 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    136 shares
    Share 54 Tweet 34
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Serum Adiponectin’s Role in Diabetes and Lipid Profiles

Animal Excrement in Ghanaian Traditional Medicine Practices

BESSY II Unveils Phosphorus Chains: A One-Dimensional Material Exhibiting Unique 1D Electronic Behavior

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.