• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A normal DNA repair process can become a major source of mutations in cancer

Bioengineer by Bioengineer
August 4, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at IRB Barcelona describe the “mutation fog”

IMAGE

Credit: Dave Hoefler on Unsplash.

Hypermutation is an unusual occurence that can lead to many nearby mutations at once, severely damaging our genetic material and potentially causing cancer. The best known type of local hypermutation, called a mutation shower or thunderstorm, is quite uncommon and it leads to many mutations accumulated in a small area, e.g. a single gene.

Researchers from IRB Barcelona’s Genome Data Science Lab, led by the ICREA researcher Fran Supek, have discovered a new type of hypermutation called mutation fog, which can generate hundreds of mutations in every cell. Such mutations are widely distributed, but accumulate in the most important regions of the genome, where genes reside (the so-called euchromatin). The fact that these mutations are spread around explains why they have remained undetected until now.

Surprisingly, the scientists have also identified that the newly discovered hypermutation type is related to a normal DNA repair process. When cells sense a mismatch in their DNA, they undergo a DNA repair reaction, in order to preserve genetic information. Remarkably, this reaction can become coupled to the APOBEC enzyme-typically used by human cells to defend against viruses and having an important role in fighting hepatitis and HIV. The work by the Genome Data Science Lab indicates that, in some cases, when both the APOBEC enzymes and the DNA repair process are active at the same time, APOBEC hijacks the DNA repair, generating the mutation fog.

“We think that this APOBEC-driven mutation fog has a mutagenic potential that matches or even exceeds that of well-known strong carcinogens, such as tobacco smoke or ultraviolet radiation,” Fran Supek explains. Recent work by other research groups suggests that the process appears to be more active in late-stage metastatic cancers: it helps the cancer evolve, enabling it to resist drugs and radiation. “This finding makes APOBEC an attractive target for treating cancer, removing its ability to evolve and to become more aggressive,” adds Supek.

The origin of a half of the mutations in some lung and breast cancers

A thorough analysis of more than 6,000 human cancer genomes, including lung tumours, breast tumours and melanomas, among others, led to the finding that the mutation fog is a common phenomenon. “More than half of all APOBEC mutations in some lung or breast cancers are generated by the hypermutation mechanism that we have found,” says David Mas-Ponte, first author of the study and PhD student in the Genome Data Lab.

Some types of cancer, such as cervical or some head-and-neck cancers, are known to be due to viruses. However, this study has found mutations caused by this APOBEC system not only in these tumours but also in cancers that are not currently known to be virus-related. Further work should clarify what triggers the APOBEC system. “Understanding APOBEC better could have broad implications for cancer treatment,” adds Mas-Ponte.

The HyperClust statistical method

Mas-Ponte and Supek designed a statistical method, called HyperClust, that can rapidly analyse large amounts of human genomic data to find unusual mutational processes that can lead to simultaneous mutations, such as these cases of mutation fog. This statistical method is described in the article, which has been published in Nature Genetics, and is also available as an open-source software in a Github repository.

This work has been funded by the ERC Starting Grant “HYPER-INSIGHT” awarded to Fran Supek; ICREA reaearcher and EMBO Young Investigator; and the Severo Ochoa grant awarded to IRB Barcelona. David Mas-Ponte was the recipient of an FPI-SO fellowship.

###

Media Contact
Nahia Barberia
[email protected]

Original Source

https://www.irbbarcelona.org/en/news/mutations-in-cancer-genomes-foggy-with-a-chance-of-thunderstorms

Related Journal Article

http://dx.doi.org/10.1038/s41588-020-0674-6

Tags: Algorithms/ModelsBioinformaticsBiologyBiomedical/Environmental/Chemical EngineeringBreast CancercancerCell BiologyGenetics
Share12Tweet8Share2ShareShareShare2

Related Posts

Krill Oil Enhances Curcumin Stability in Liposomes

November 3, 2025

Transforming Healthcare: Trauma-Informed Change in South Texas

November 3, 2025

David B. Allison, PhD (Baylor College of Medicine), Lauren Hunt, PhD, RN, FNP (UCSF), and Arlan Richardson, PhD (University of Oklahoma Health Sciences) to Receive AFAR Annual Scientific Awards of Distinction

November 3, 2025

Breakthrough Foundation Model Unveils Cellular Organization Within Tissues

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Krill Oil Enhances Curcumin Stability in Liposomes

EHU Showcases Breakthrough Materials Capable of Absorbing 99.5% of Light for Solar Tower Applications

Revolutionizing Matter at the Nanoscale: The Future of Field-Based Printing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.