• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, February 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A next-generation sensor network for tracking small animals

Bioengineer by Bioengineer
April 2, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Sherry and Brock Fenton

A newly developed wireless biologging network (WBN) enables high-resolution tracking of small animals, according to a study published April 2 in the open-access journal PLOS Biology by Simon Ripperger of the Leibniz Institute for Evolution and Biodiversity Science, and colleagues. As noted by the authors, WBNs could close an important gap in biologging: the fully automated tracking and proximity-sensing of small animals, even in closed habitats, at high spatial and temporal resolution.

Recent advances in animal tracking technology have ushered in a new era in biologging. By collecting data of unprecedented quantity and quality, automated methods have revolutionized numerous fields, including animal ecology, collective behavior, migration, and conservation biology.

However, satellite communication for localization or data access requires a lot of power, and heavy transmitters greatly limit the ability to track smaller vertebrate species. To address this problem, Ripperger and colleagues developed their WBN — a system that enables high-resolution tracking of animals weighing as little as 20 grams. These smaller species make up a large proportion of birds and mammals, so WBNs will give researchers new capabilities to address a wide range of questions in animal behavior and ecology.

As reported in the study, WBN is a scalable, flexible system that offers a temporal resolution of seconds, allows automated recording of movement trajectories even in structurally complex habitats such as woodland, and is an ultra-low-power solution for remote data access over distances of several kilometers.

The researchers deployed WBN to study wild bats, creating social networks and flight trajectories of unprecedented quality. To do this, wireless localization nodes are placed in the area of study, and light-weight mobile nodes are attached to the animals. In one example, the authors planted 17 localization nodes in a 1.5-hectare area of German forest, and glued mobile nodes to the fur on the backs of 11 mouse-eared bats, allowing them to track their flights and interactions.

According to the authors, WBNs will greatly benefit biologging of small animal species that move over smaller and more predictable spatial scales, especially inside habitats where signal transmission is constrained. Such setups will allow studies on the effects of social network dynamics on phenomena such as transmission of social information and pathogens, and key ecosystem functions such as pollination and seed dispersal.

Ripperger adds: “Key to success in this project was the close collaboration among biologists, computer scientists, and electrical engineers. Thanks to the high level of miniaturization of the animal-borne tags, we can now collect data of unprecedented quantity and quality that allows us studying the behavior of small animals in much greater detail. For example, we learned from proximity sensing in the wild that noctule bat mothers guide their offspring to novel roosts and that social relationships in vampire bats that formed in the lab persist in the wild. In the future, we plan to expand our work to other taxonomic groups – a method that allows tracking bats is also likely to work for other small animals such as reptiles or songbirds.”

###

In your coverage please use these URLs to provide access to the freely available articles in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000655

Citation: Ripperger SP, Carter GG, Page RA, Duda N, Koelpin A, Weigel R, et al. (2020) Thinking small: Next-generation sensor networks close the size gap in vertebrate biologging. PLoS Biol 18(4): e3000655. https://doi.org/10.1371/journal.pbio.3000655

Funding: This study was funded by grants of the Deutsche Forschungsgemeinschaft (FM, AK, RK, KMW, WSP, JT, JR, FD; https://www.dfg.de/) within the research unit FOR-1508, a Smithsonian Scholarly Studies Awards grant (RAP, GGC, SPR, FM; https://www.si.edu/), and a National Geographic Society Research Grant WW-057R-17 (GGC; https://www.nationalgeographic.com/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors declare that no competing interests exist.

Media Contact
Simon P. Ripperger
[email protected]

Original Source

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000655

Related Journal Article

http://dx.doi.org/10.1371/journal.pbio.3000655

Tags: Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Menopause Care: Insights from Workforce Review and Consultation

LRRK2R1627P Mutation Boosts Gut Inflammation, α-Synuclein

3D Gut-Brain-Vascular Model Reveals Disease Links

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.