• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A new way to monitor blood flow in the brain. The πNIRS technique could revolutionize medical diagnostics

Bioengineer by Bioengineer
January 9, 2023
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Monitoring the proper blood supply to the brain is crucial, not only to prevent neurological diseases but also to treat them. The parallel near-infrared interferometric spectroscopy technique, or simply πNIRS, could make life easier for doctors and patients worldwide.

A new way to monitor blood flow in the brain. The πNIRS technique could revolutionize medical diagnostics

Credit: Source ICTER, Karol Karnowski, PhD

Monitoring the proper blood supply to the brain is crucial, not only to prevent neurological diseases but also to treat them. The parallel near-infrared interferometric spectroscopy technique, or simply πNIRS, could make life easier for doctors and patients worldwide.

Blood drives our entire body and is especially important for brain function. On average, about 50 ml/min/100 g flows through brain tissue – about 80-90 ml/min/100 g through the gray matter and 20-30 ml/min/100 g through the white matter. When there is a lack of oxygen and, therefore, a lack of proper blood supply, the death of nerve cells occurs – then we speak of a stroke. It affects about 70,000 people every year in Poland.

This is why it is essential to monitor cerebral blood flow in disease prevention and treatment. Neurology knows many effective methods for doing so, but many of them have their weaknesses. Now a team of neuroscientists led by ICTER researchers has developed a technique that can significantly improve the monitoring of cerebral blood flow in vivo. It is described in a paper titled. “Continuous-wave parallel interferometric near-infrared spectroscopy (CW πNIRS) with a fast two-dimensional camera,” by Saeed Samaei; Klaudia Nowacka; Anna Gerega; Zanna Pastuszak; Dawid Borycki, which appeared in the journal Biomedical Optics Express.

How to monitor cerebral blood flow?

Cerebral blood flow (CBF) uses about 15% of cardiac output to deliver the essential substances (oxygen and glucose) to the brain and take away the unnecessary ones (products of metabolism). Any deviation from the norm can cause temporary brain dysfunction and irreversible trigger diseases, with Alzheimer’s disease at the forefront. That’s why non-invasive monitoring of CBF is so important – we have several practical tools for doing so.

The first that comes to mind is functional magnetic resonance imaging (fMRI), probably the most widely used diagnostic test in the world, which also works well here. It allows monitoring local changes in brain blood supply and associated fluctuations in neuronal activity in vivo. The technique offers high-resolution images but is quite expensive and difficult to use in young children, for example. This is where optical methods come to the rescue.

Brain oxygenation can be assessed using functional near-infrared spectroscopy (fNIRS). This technique allows non-invasive measurement of regional cerebral oxygenation by using selective absorption of radiation of electromagnetic waves in the range of 660-940 nm by chromophores in the human body. It is often used as a tool to help monitor a patient’s condition, including during neurosurgery.

On the other hand, blood flow can be continuously monitored by diffuse correlation spectroscopy (DCS). Their most advanced modifications are based on continuous-wave (CW) lasers, which prevent absolute measurements. Interferometric near-infrared spectroscopy (iNIRS) can help here. Still, previous studies have shown that this method is too slow to detect immediate changes in blood flow that translate into neuronal activity. This is because it is a single-channel system, which measures the intensity of only the single-mode of the light collected from the sample.

Innovative πNIRS

A team of researchers at ICTER decided to modify iNIRS, relying on parallel near-infrared interferometric spectroscopy (πNIRS) for multi-channel detection of cerebral blood flow. To achieve this, it was necessary to alter the iNIRS detection system. In πNIRS, the collected optical signals are recorded with a two-dimensional CMOS camera operating at an ultrafast frame rate (~1 MHz). Each pixel in the recorded image sequence effectively becomes an individual detection channel. With this approach, it is possible to obtain similar data as with iNIRS, but much faster – even by orders of magnitude!

Such an improvement, in turn, translates into greater sensitivity of the system and accuracy of detection itself. It is possible to detect rapid changes in blood flow related to the activation of neurons, for example, in response to an external stimulus or administered drug. The solution could be helpful for diagnosing CBF-related neuronal disorders and evaluating the effectiveness of therapeutic approaches, e.g., for neurodegenerative diseases.

  • This project will improve rapid, non-invasive systems for human cerebral blood monitoring in vivo. Continuous and non-invasive monitoring of blood flow could help treat significant brain diseases. In addition, quick detection of cerebral blood flow will bring us closer to developing a non-invasive brain-computer interface (BCI) that could help people with disabilities. Finally, our project will strengthen the tradition of Polish development in diffusion optics – says Dawid Borycki of ICTER.

Tests have confirmed that the technique used effectively monitors prefrontal cortex activity in vivo. Moreover, it can be further improved thanks to the development of LiDAR technology and ultrafast volumetric imaging of the eye, reducing the cost of CMOS cameras. Thus, the πNIRS technique can monitor cerebral blood flow and absorption changes from more than one spatial location.

The data obtained by the πNIRS technique can be applied to the diagnosis of cerebral circulatory disorders, which will facilitate the evaluation of the patient’s condition and allow the prediction of early and long-term treatment results.

Author of the press release: Marcin Poweska

Photos by: Karol Karnowski, PhD

Photo comment:

In experiments conducted at ICTER, a team of researchers (Saeed Samaei, Klaudia Nowacka) led by David Borycki used laser light along with an ultrafast camera to measure blood flow in the brain. The measurements showed that this novel technique, called parallel interferometric (π) NIRS, is sensitive enough to non-invasively analyze prefrontal cortex activation while reading unfamiliar text. which contributes to the development of a non-invasive brain-computer interface. Which contributes to the development of a non-invasive brain-computer interface.

Cited paper:

Saeed Samaei, Klaudia Nowacka, Anna Gerega, Żanna Pastuszak, and Dawid Borycki, “Continuous-wave parallel interferometric near-infrared spectroscopy (CW πNIRS) with a fast two-dimensional camera,” in Biomedical Optics Express, Vol. 13, Issue 11, pp. 5753-5774 (2022) https://doi.org/10.1364/BOE.472643

The International Centre for Translational Eye Research (MAB/2019/12) project is carried out by the Institute of Physical Chemistry, Polish Academy of Sciences within the International Research Agendas programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.



Journal

Biomedical Optics Express

DOI

10.1364/BOE.472643

Share12Tweet8Share2ShareShareShare2

Related Posts

Connections between peripheral artery disease, negative social determinants of health like poverty may lead to earlier diagnosis, intervention in at-risk Blacks

Connections between peripheral artery disease, negative social determinants of health like poverty may lead to earlier diagnosis, intervention in at-risk Blacks

January 31, 2023
Photomicrograph of Cryptococcus deneoformans

Warmer climate may drive fungi to be more dangerous to our health

January 30, 2023

Machine learning identifies drugs that could potentially help smokers quit

January 30, 2023

Marburg vaccine shows promising results in first-in-human study

January 30, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

An illuminated water droplet creates an ‘optical atom’

Connections between peripheral artery disease, negative social determinants of health like poverty may lead to earlier diagnosis, intervention in at-risk Blacks

Monitoring an ‘anti-greenhouse’ gas: Dimethyl sulfide in Arctic air

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In