• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A new understanding of protein movement

Bioengineer by Bioengineer
July 7, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UD engineers uncover role of surface diffusion in protein transport, which could aid biopharmaceutical processing

IMAGE

Credit: Photo courtesy of Ohnmar Khanal, Vijesh Kumar and Abraham Lenhoff

Many of the most promising medicines under development are proteins, often antibodies, to help patients fight disease. These proteins must be purified as part of the manufacturing process — a task that can be tricky and result in costly waste.

Scientists have struggled to directly measure the movement of proteins, known as protein diffusion, in materials that include both solid and liquid components. They have also disagreed on how movement at the surface of the material contributes to protein movement when using ion-exchange chromatography, a laboratory and manufacturing method for separating materials based on their charge. Proteins can creep into the pores of resin beads used to perform ion-exchange chromatography and bind on the walls, based on charge.

Now, a team of engineers from the University of Delaware, with a collaborator from pharmaceutical company Amgen, has shown that surface diffusion in protein transport into ion-exchange beads depends on adsorption affinity — a measure of attraction between the two materials. By exploiting this relationship, the team developed a procedure to purify a monoclonal antibody — a type of molecule that mediates immunity — with productivity 43% higher than usual.

The team’s results were published in the Proceedings of the National Academy of Sciences in March. The paper’s authors include Ohnmar Khanal, a doctoral student in chemical engineering; Vijesh Kumar, postdoctoral fellow in chemical engineering; Fabrice Schlegel, a principal engineer at Amgen; and Abraham Lenhoff, Allan P. Colburn Professor of Chemical Engineering.

“We present a very strong case for the significance of surface diffusion, and we use multiple approaches to corroborate its importance through a simple technique that can be implemented right away,” said Khanal.

The team used chromatography, mechanistic modeling, confocal microscopy and small-angle neutron scattering. The latter was performed at the National Center for Neutron Research at the National Institute for Standards and Technology.

By understanding and exploiting protein surface diffusion in ion-exchange chromatography, researchers can build upon this work and develop methods to reduce waste during the expensive drug manufacturing process.

“Ion-exchange chromatography of proteins is an absolutely key operation in biopharmaceutical manufacturing,” said Lenhoff.

Kumar and Lenhoff are now working on a separate project funded by the National Institute for Innovation in Biopharmaceutical Manufacturing, based at the University of Delaware, to develop mathematical models of chromatography, which could enable more efficient ways of designing and developing manufacturing processes.

Researchers can also build upon this new fundamental understanding of protein diffusion and perhaps apply it to other problems. Protein diffusion on surfaces is an important phenomenon inside the body, too. Movement and fibrillation of amyloid-ß in the brain has been associated with neurogenerative diseases, for example, and protein surface diffusion can affect the performance of biosensors.

“This is an example of how fundamental research can lead to practical applications and significant improvements in those practical applications,” said Lenhoff.

And it all started with a brainstorm, where Khanal suggested more in-depth investigation of surface diffusion’s relationship to binding affinity on the charged surfaces using complementary tools.

“When we started this, we never thought we would go this far,” said Kumar. “It started as a very small idea.”

###

Media Contact
Peter Kerwin
[email protected]

Original Source

https://www.udel.edu/udaily/2020/june/abraham-lenhoff-surface-diffusion-protein-transport/

Tags: Chemistry/Physics/Materials SciencesPharmaceutical ChemistryPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

August 15, 2025
Efficient Framework Models Ionic Materials’ Surface Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.