• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 24, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A new strategy of fabricating p-n junction in single crystalline Si nanowires, twisting

Bioengineer by Bioengineer
March 20, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

If a semiconductor crystal is doped with n-type dopants in one region and with p-type dopants in another region, a p-n junction configuration is formed. p-n junctions are fundamental building units of light emitting diodes, solar cells and other semiconductor transistors. p-n junctions in nano-structures are also expected to be the fundamental units of next generation nano-devices. However, due to the strong attraction between them, n-type dopants and p-type dopants tend to form neutral pairs. As a result, the p-n junction fails. To prevent such attraction between n-type dopants and p-type dopants, heterostructures are introduced, where one semiconductor material is doped with n-type dopants while the other is doped with p-type dopants, and the interface between two different semiconductor materials acts as an energy barrier between n-type dopants and p-type dopants. Indeed, the usage of heterostructures stands for a paradigm for the material design of p-n junction. Recently, similar p-n junction configurations are also possible for nanowire heterostructures such as co-axial core-shell nanowires. However, there are several limitations in nanowire heterostructures. For example, the synthesis of core-shell nanowires usually involves a two-step process, which costs extra expense. Often the shell of the obtained nanowire heterostructure is polycrystalline. Such imperfection goes ill with the transports of carriers. Furthermore, the interface between the core and shell also introduces detrimental deep centers that largely hinder the device efficiency.

Can we make p-n junctions with single crystalline nanowires? Frankly, the answer will be “No” if one thinks the problem intuitively. Indeed, similar to the bulk, p-type dopants and n-type dopants in a codoped single crystalline nanowire also feel strong Coulomb attraction. Without an interface, how can we overcome such attraction? It requires an effective modulation/control of the spatial occupation sites, i.e., spatial distribution, of dopants. In fact, this is one of the long-standing and fundamental issues regarding doping in semiconductor. From the point of view of materials engineering, this can be attributed to the failure of conventional approaches such as hydrostatic, biaxial and uniaxial stresses on the modulation of the spatial distribution of dopants. However, since all these mentioned distortions are uniform, can we employ some inhomogeneous ones, such as twisting? In fact, twisting of structures represents a focus of recent condensed matter physics research in low dimensions.

In a new paper published in National Science Review, a team of scientists from Beijing Normal University, the Chinse University of Hong Kong, and Beijing Computational Science Research Center present their theoretical advances of codoped Si nanowire under twisting. They employ both microscopic simulations based on the generalized Bloch theorem and analytical modeling based on the bond orbital theory to conduct the study and deliver the physics behind.

Interestingly, twisting has substantial impact on distribution of dopants in nanowires. From the displayed figure, in a twisted Si nanowire, a dopant of larger atomic size (Such as Sb) has a lower formation energy if it occupies an atomic site closer to nanowire surface; On the opposite, a dopant of smaller atomic size (Such as B) has a lower formation energy if it occupies an atomicsites around the nanowire core. According to their calculations, it is possible to separate n-type and p-type dopants in the codoped nanowire with proper choices of codoping pairs, e.g., B and Sb. A bond orbital analysis reveals that it is the twist-induced inhomogeneous shear strain along nanowire radial dimension that drives the effective modulation. These findings are fully supported by density-functional tight-binding based generalized Bloch theorem simulations.

This new strategy largely simplifies the manufactory process and lowers the manufactory costs. If the twisting is applied when the device is in working mode, the recombination of different types of dopants is largely suppressed. Even if the twisting is removed when the device is in working mode, due to the limited diffusion, the recombination is still difficult.

###

This research received funding from National Natural Science Foundation of China, Beijing Normal University, HKRGC funding, and the Chinese University of Hong Kong.

See the article:
Dong-Bo Zhang Xing-Ju Zhao, Gotthard Seifert, Kinfai Tse, and Junyi Zhu,

Twist-Driven Separation of p-type and n-type Dopants in Single Crystalline Nanowires Natl Sci Rev 2019; 10.1093/nsr/nwz014

https://doi.org/10.1093/nsr/nwz014

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Bei Yan
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwz014

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Route to Strychnos Alkaloids via Thiophene Cycloadditions

January 23, 2026
Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

January 20, 2026

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    156 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    80 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    62 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Functional 1p36.23 Variants Influence Schizophrenia via RERE

Barriers and Facilitators in Dementia Pain App Use

Graphene Solar Sails: Innovative Auger Mechanism for Halo

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.