• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A new role for an old immune cell may lead to novel therapies for infection and cancer

Bioengineer by Bioengineer
March 1, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study has identified a previously undescribed role for a type of unconventional T cell with the potential to be used in the development of new therapies for infection and cancer.

The study, published today in Nature Communications, shows that Gamma Delta T cells are able to generate immunological memory against previous infections and cancerous targets.

The results challenge the textbook description of Gamma Delta T cells as 'natural born killers' with an innate ability to recognise and destroy abnormal cells.

Lead author of the study, Professor Ben Willcox from the Institute of Immunology and Immunotherapy at the University of Birmingham, explains the key findings: "Instead of being 'natural born killers', we found these cells are actually quite smart. They adapt to and remember what they have encountered in life, which may include infections and pre-cancerous cells.

"This phenomenon of 'immunological memory' is what current vaccines exploit, but because Gamma Delta T cells recognise their targets in a different way, they present novel routes to generate vaccines, and also cell therapy approaches against infection and cancer."

In order to harness these "adaptive" abilities of Gamma Delta T cells, work is now required to identify the mechanism by which they recognise abnormal cells.

"We are working with other partners to understand exactly how these cells recognise signs of abnormality in infection and cancer, focussing on human cohorts. This knowledge will be crucial to help us build on the current study and explore how to develop new cell therapies and vaccines that exploit Gamma Delta T cells," adds Professor Willcox.

###

Media Contact

Liz Bell
[email protected]
44-012-141-42772
@unibirmingham

http://www.bham.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

IEEE Study Highlights Groundbreaking Photonics Innovations of 2024

October 31, 2025

STING Agonists Induce Monocyte Death Through Multiple Pathways

October 31, 2025

Concentration-Controlled Doping Converts P-Type Polymer into Its N-Type Equivalent

October 31, 2025

Inside the Nuclear Pore of Arabidopsis thaliana

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1293 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

IEEE Study Highlights Groundbreaking Photonics Innovations of 2024

STING Agonists Induce Monocyte Death Through Multiple Pathways

Concentration-Controlled Doping Converts P-Type Polymer into Its N-Type Equivalent

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.