• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A new quantum switch for electronics

Bioengineer by Bioengineer
February 11, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Oleg Lychkovskiy

A Russian physicist and his international colleagues studied a quantum point contact (QCP) between two conductors with external oscillating fields applied to the contact. They found that, for some types of contacts, an increase in the oscillation frequency above a critical value reduced the current to zero – a promising mechanism that can help create nanoelectronics components. This research supported by the Russian Science Foundation (RSF) was published in the Physical Review B journal.

A persistent trend in the modern electronics, miniaturization has spurred demand for new nano-sized devices that boast advanced performance and leverage quantum effects with electrons behaving as particles and waves at the same time. Of particular importance is precise control of charge transport by means of external electric and magnetic fields. This can be achieved in a tiny QPC comparable in size to an atom (several angstroms) and with just a few electron wavelengths fitting in. Such contacts can be obtained experimentally by connecting two massive electrodes with a layer of two-dimensional electron gas, i.e. gas with particles freely moving in two directions only, and then applying voltage to the plates. The higher the voltage, the larger the forbidden area for the electrons and the narrower the contact.

The authors did theoretical research on two conductors connected by a QPC subjected to external oscillating fields. The charge carriers in the conductors were assumed to have different initial concentrations. At low oscillation frequencies, the current at the contact tends to equalize the concentrations. However, the scientists discovered that, for a certain type of contacts, the current drops to zero and the concentrations are never equal at frequencies above the critical value. This provides telling evidence of a non-equilibrium phase transition ? a dynamic phenomenon which accounts for the fundamental difference between the system properties below and above the critical value of an external parameter, in this case, oscillation frequency.

“This striking effect is best illustrated by a simple example. Imagine two vessels filled with water and their bottoms connected by a tube. If the water levels are different, water will keep flowing from one vessel to the other until its levels are the same in both vessels. Now imagine that we shake the tube with a frequency above some critical value. Water will stop flowing and will never balance out to the same level. Of course, this does not happen to water in real life, but it does happen to electrons flowing through a quantum contact “shaken” by external electric and magnetic fields,” explains Oleg Lychkovskiy, a PhD in physics and mathematics and a senior research scientist at the Skolkovo Institute of Science and Technology (Skoltech), Moscow Institute of Physics and Technology and (MIPT) and V.A. Steklov Mathematical Institute of RAS.

This research can pave the way for new nanometer-scale electronic devices with a broad range of potential applications. Electronic devices and systems based on quantum effects are a promising avenue of research, considering that the Russian nanoelectronics and photonics market may balloon to 20 billion rubles by 2027.

###

Media Contact
Ilyana Zolotareva
[email protected]

Original Source

https://www.skoltech.ru/en/2021/02/a-new-quantum-switch-for-electronics/

Related Journal Article

http://dx.doi.org/10.1103/PhysRevB.103.L041405

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMathematics/Statistics
Share13Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Nonclassical Correlations in Bose-Einstein Condensates

Probiotics Boost Gut Health Post-Ovarian Cancer Surgery

Monocyte-Lymphocyte Ratio: A Biomarker for Diabetic Neuropathy

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.