• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A new protocol for light-sheet live imaging of C. elegans adults emerges from woods hole embryology course

Bioengineer by Bioengineer
October 31, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WOODS HOLE, Mass. — The beauty of live-imaging studies is the specimen is alive, allowing dynamics such as cell division and embryonic development to be recorded over time.

C. elegans adult and embryos

Credit: Yicong Wu

WOODS HOLE, Mass. — The beauty of live-imaging studies is the specimen is alive, allowing dynamics such as cell division and embryonic development to be recorded over time.

Yet the frustration of live-imaging studies is the specimen is alive – wriggling, twisting, escaping the field of view. Plus, it’s delicate, susceptible to heat damage or death from the imaging equipment itself.

A technical solution to this quandary recently emerged from the MBL Embryology course, in “a classic example of the collaborative effort here at MBL,” says MBL Imaging Research Specialist Carsten Wolff.

“During the 2021 Embryology course, we started to develop a technique that enables us to image adult C. elegans worms for longer periods of time, and at high resolution, using light sheet microscopy,” says Wolff. A group of course faculty and staff, collaborating with MBL imagers, fine-tuned the protocol during the 2022 course and wrote up the paper, which is published this month in Frontiers in Cell and Developmental Biology.

The nematode C. elegans is a popular organism in biological and biomedical research. Light-sheet fluorescence microscopy (LSFM) has been very successful in capturing embryonic processes in C. elegans, as well as in mice and zebrafish. But once the organisms hatch out, LSFM presents limitations.

In C. elegans, the difficulty had been sample mounting. Due to its optical properties, low-melt agar works well as a sample medium for larger organisms, but the little roundworms tend to burrow into the soft agar and disappear. Consequently, prior to this protocol, the longest LSFM imaging time for adult C. elegans had been 20 minutes. The new protocol extends that time to more than two hours, while avoiding heat stress in the specimen.

“The innovation we describe is essentially a combination of two known mounting approaches,” Wolff says. “One is a biopolymer that is viscous during sample preparation, but once you expose it to UV light it hardens and keeps the sample (in this case, C. elegans) immobile. The second part is a mounting method in plastic tubes that allows the use of light sheet microscopy. The combination allows one to live-image adult C. elegans over a period of more than 2 hours. It sounds like a short time period, but because of previous problems with immobilizing the specimen, this was not possible. Also, imaging from different angles, which LSFM allows, wasn’t possible before because of the specimen’s constant body movement.”

The team used the protocol to timelapse image a sensory neuron’s dendrites branching and pruning. And they expect it will enable better live-imaging studies of other important cell and developmental processes, such as germ stem cell biology, cell migration, cell division and cell invasion. The protocol is generalizable to work with other organisms, with little or no modifications.

In addition to Wollf, co-authors are MBL Embryology course teaching assistant Jayson J. Smith, a postdoc at University of Chicago; course teaching assistant Isabel Kenny, a doctoral candidate at Duke University; David Matus of Stony Brook University; course director David Sherwood of Duke University; MBL Investigator and CZI Scientist Abhishek Kumar; and MBL Research Assistant Rachel Cray.

Other Embryology course participants, MBL Senior Aquarist Jonathan Henry, and MBL Central Microscopy Facility staff are acknowledged for their assistance.

—###—

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery – exploring fundamental biology, understanding marine biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

 

 



Journal

Frontiers in Cell and Developmental Biology

DOI

10.3389/fcell.2022.1012820

Method of Research

Experimental study

Subject of Research

Animals

Article Title

A light sheet fluorescence microscopy protocol for Caenorhabditis elegans larvae and adults

Article Publication Date

7-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Nautilus Shells: Conservation, Crafts, and Legal Challenges

August 28, 2025
EBLN3P Enhances Gastric Cancer Growth and Spread

EBLN3P Enhances Gastric Cancer Growth and Spread

August 28, 2025

Two Fish Species, Two Strategies: A Novel Model Unveils Insights into Working Memory

August 28, 2025

Not All Calories Are Created Equal: How Ultra-Processed Foods Impact Men’s Health

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Borosilicate Glass Enhances Magnetic Hyperthermia Against Bone Tumors

Penn Engineers Transmit Quantum Signals Using Standard Internet Protocol

Gastrointestinal Effects of Incretin Obesity Drugs Explored

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.