• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A new molecular scissors act like a GPS to improve genome editing

Bioengineer by Bioengineer
July 6, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: University of Copenhagen

Researchers from the University of Copenhagen (Denmark), led by the Spanish researcher Guillermo Montoya, have discovered how Cpf1, a new molecular scissors unzip and cleave DNA. This member of the CRISPR-Cas family displays a high accuracy, capable of acting like a GPS in order to identify its destination within the intricate map of the genome. The high precision of Cpf1 will improve the use of this type of technology in repairing genetic damage and in other medical and biotechnological applications.

Ana Hernando

A scientific team from in the Novo Nordisk Foundation Center for Protein Research (NNF-CPR), at the University of Copenhagen, has succeeded in visualizing and describing how a new system for genome editing, known as Cpf1, works. This protein belongs to the Cas family and enables the cleavage of double stranded DNA, thus allowing the initiation of the genome modification process. The results of the study have been published in the journal Nature.

Guillermo Montoya, a researcher in the fields of biochemistry and molecular biology who led the study, explains to SINC that the new molecular scissors "will enable us to more safely modify and edit the instructions written in the genome, due to the utmost precision of the target DNA sequence recognition".

The CRISPR Cas9 system for cutting and paste genome sequences is already being used to modify animal and plant genomes. Also to treat illnesses, such as cancer and retinal diseases, in humans and its applications are growing very fast.

X-Ray Crystallography Technique

Researchers across the world are trying to perfect this genome editing technique with the aim of making it yet more precise and efficient. To achieve this, they have also focused on other proteins that specifically cut DNA, such as Cpf1, whose manipulation can direct them to specific locations in the genome. Montoya's team has achieved this using an X-ray Crystallography to decipher the molecular mechanisms controlling this process.

"We radiated the crystals of the Cpf1 protein using X-rays to be able to observe its structure at atomic resolution, enabling us to see all its components," points out the co-author of this study. "X-ray diffraction is one of the main biophysical techniques used to elucidate biomolecular structures," he continues.

In his opinion, "the main advantage of Cpf1 lies in its high specificity and the cleaving mode of the DNA, since it is possible to create staggered ends with the new molecular scissors, instead of blunt-ended breaks as is the case with Cas9, which facilitates the insertion of a DNA sequence."

"The high precision of this protein recognising the DNA sequence on which it is going to act functions like a GPS, directing the Cpf1 system within the intricate map of the genome to identify its destination. In comparison with other proteins used for this purpose, it is also very versatile and easy to be reprogrammed," Montoya adds.

Genetic diseases and tumours

These properties make this system "particularly suitable for its use in the treatment of genetic diseases and tumours," he affirms.

The team has previously worked with the French biotechnology company Celletics on the use of meganucleases -other proteins that can be redesigned to cut the genome in a specific location- to treat certain types of leukemia.

The new technology "can also be used to modify microorganisms, with the aim of synthesising the metabolites required in the production of drugs and biofuels," adds Montoya.

This researcher, from Getxo (Biscay, Spain), says that there are many companies interested in this new technology. They are mostly from the biotechnology sector in the field of microorganism manipulation, but cannot be named due to confidentiality agreements.

###

Reference:

Stefano Stella, Pablo Alcón & Guillermo Montoya. "Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage". Nature (31 de mayo de 2017) DOI 10.1038/nature22398

Media Contact

SINC
[email protected]
34-914-251-820
@FECYT_Ciencia

http://www.fecyt.es/fecyt/home.do

Original Source

http://www.agenciasinc.es/Noticias/Un-nuevo-bisturi-molecular-actua-como-un-GPS-para-mejorar-la-edicion-genetica

############

Story Source: Materials provided by Scienmag

Share14Tweet8Share2ShareShareShare2

Related Posts

Innovative Personalized Risk Score Promises Enhanced Ovarian Cancer Detection

September 17, 2025

Federal Funding Drives Breakthroughs in Cancer Research, AACR Report Shows

September 17, 2025

Engineering Topological Chiral Transport in Flat-Band Ultracold Atoms

September 17, 2025

Treating Anal Lesions Lowers Invasive Cancer Risk in HIV

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Personalized Risk Score Promises Enhanced Ovarian Cancer Detection

Federal Funding Drives Breakthroughs in Cancer Research, AACR Report Shows

Engineering Topological Chiral Transport in Flat-Band Ultracold Atoms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.