• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A new model offers an explanation for the huge variety of sizes of DNA in nature

Bioengineer by Bioengineer
February 22, 2023
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Why is “junk DNA” not deleted from the original genome over millions of years of evolution?

Prof. Tal Pupko

Credit: Tel Aviv University

Why is “junk DNA” not deleted from the original genome over millions of years of evolution?

A new model offers an explanation for the huge variety of sizes of DNA in nature

  • Unlike “junk email” that is immediately deleted from the email box, “junk DNA” continues to exist in living creatures in nature such as bacteria, insects, and even mammals such as humans, alongside the original genome and thus the genome grows throughout evolution.
  • The researchers’ explanation: the “junk DNA” hides in functional areas, thus deletions are likely to damage the functional DNA and therefore are rejected by evolution.

 

A new model developed at Tel Aviv University offers a possible solution to the scientific question of why neutral sequences, sometimes referred to as “junk DNA”, are not eliminated from the genome of living creatures in nature and continue to exist within it even millions of years later.

 

According to the researchers, the explanation is that junk DNA is often located in the vicinity of functional DNA. Deletion events around the borders between junk and functional DNA are likely to damage the functional regions and so evolution rejects them. The model contributes to the understanding of the huge variety of genome sizes observed in nature.

 

The phenomenon that the new model describes is called by the team of researchers “border induced selection”. It was developed under the leadership of the PhD student Gil Loewenthal in the laboratory of Prof. Tal Pupko from the Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences and in collaboration with Prof. Itay Mayrose (Faculty of Life Sciences, Tel Aviv University). The study was published in the journal “Open Biology“.

 

The researchers explain that throughout evolution, the size of the genome in living creatures in nature changes. For example, some salamander species have a genome ten times larger than the human genome.

 

Prof. Pupko explains: “The rate of deletions and short insertions, which are termed in short as ‘indels’, is usually measured by examining pseudogenes. Pseudogenes are genes that have lost their function, and in which there are frequent mutations, including deletions and insertions of DNA segments. In previous studies that characterized the indels, it was found that the rate of deletions is greater than the rate of additions in a variety of creatures including bacteria, insects, and even mammals such as humans. The question we tried to answer is how the genomes are not deleted when the probability of DNA deletion events is significantly greater than DNA addition events.”

 

PhD student Loewenthal says: “We have provided a different view to the dynamics of evolution at the DNA level. As mentioned, when measuring the rate of indels there will be more deletions, but the measurements are carried out in pseudogenes which are quite long sequences. We claim that in shorter neutral segments, deletions are likely to delete adjacent functional segments which are essential for the functioning of the organism, and therefore will be rejected. We call this phenomenon “border-induced selection”. If so, when the segment is short, there will be a reverse bias so that there will be more insertions than deletions, and therefore short neutral segments usually are retained. In our study, we simulated the dynamics of indels, while taking into account the effect of “border-induced selection” and compared the simulation results to the distribution of human intron lengths (introns are DNA segments in the middle of a protein-coding gene, which themselves do not code for a protein). A good match was obtained between the results of the simulations and the distribution of lengths observed in nature, and we were able to explain peculiar phenomena in the length distribution of introns, such as the large variation in intron lengths, as well as the complex shape of the distribution which does not look like a standard bell curve.”

 

Link to the article:

https://royalsocietypublishing.org/doi/10.1098/rsob.220223

 



DOI

10.1098/rsob.220223

Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    53 shares
    Share 21 Tweet 13
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.