• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A new mathematical language for biological networks

Bioengineer by Bioengineer
January 8, 2024
in Biology
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of researchers around  the Max Planck group leader and Berlin mathematics professor Michael Joswig is presenting a novel concept for the mathematical modeling of genetic interactions in biological systems. Collaborating with biologists from ETH Zurich and Carnegie Science (USA), the team has successfully identified master regulators within the context of an entire genetic network. The research results provide a coherent theoretical framework for analyzing biological networks and have been published in the “Proceedings of the National Academy of Sciences” (PNAS).

Graphical representation of microbiome manipulations

Credit: Michael Joswig

A team of researchers around  the Max Planck group leader and Berlin mathematics professor Michael Joswig is presenting a novel concept for the mathematical modeling of genetic interactions in biological systems. Collaborating with biologists from ETH Zurich and Carnegie Science (USA), the team has successfully identified master regulators within the context of an entire genetic network. The research results provide a coherent theoretical framework for analyzing biological networks and have been published in the “Proceedings of the National Academy of Sciences” (PNAS).

It is a longstanding goal of biologists to determine the key genes and species that have a decisive impact on evolution, ecology, and health. Researchers have now succeeded in identifying certain genes as master regulators in biological networks. These key regulators exert a greater control within the system and steer essential cellular processes. Previous studies have mainly focused on pairwise interactions within the system, which can be strongly affected by genetic background or biological context. “Context-dependent effects are widespread in biology but have not been sufficiently investigated. A major challenge with biological networks is that they are high dimensional. Therefore, for the first time, our team is pursuing a more far-reaching approach that includes higher-order interactions and thus identifies key regulators in the context of the entire network,” explains Michael Joswig, who is a Professor for Discrete Mathematics and Geometry at the Technische Universität Berlin, a Distinguished Fellow of the Berlin Cluster of Excellence MATH+, as well as a group leader at the Max Planck Institute for Mathematics in the Sciences in Leipzig.

The concept of epistasis as an approach for high-dimensional geometric modeling

The scientists examined real data sets provided by biologists who analyzed the life expectancy of the fruit fly Drosophila based on the presence of certain combinations of bacteria in the gut. In order to describe these processes mathematically, the team applied a high-dimensional approach from geometry, reinterpreting the well-known biological concept of epistasis. Epistasis refers to an interaction phenomenon between different genes, wherein one gene may influence the appearance of another. These interactions are crucial for understanding genetic inheritance and the diversity of phenotypes, revealing how different genes interact to regulate the expression of specific traits. Epistatic interactions hold great significance in nature; for instance, epistasis between bacteria in the microbiome can have far-reaching functional consequences.

The researchers analyzed the microbiome of an entire population of fruit flies with five different bacterial species, alongside measurements of the flies’ life expectancy under certain combinations of these bacteria, representing the phenotype. Relevant biological information was mapped using adaptive landscapes, known as fitness landscapes, and their epistasis quantified in order to investigate how individual genes and species influence interactions in the entire biological network. The resulting 5-dimensional data sets were analyzed again and graphically presented.

Identification of relevant signals as master regulators of the network

The primary contribution of this work, which not only presents the researchers’ previous findings in a new language but also reinterprets the previous work by Niko Beerenwinkel, Lior Prachter, and Bernd Sturmfels, lies in representing fitness landscapes as epistatic filtration of the network. This method enables the analysis of concrete experiments to encode relevant biological information, making it readable (interpretable) and allowing the identification of relevant signals in higher dimensions that serve as master regulators of the network.

This interdisciplinary study at the intersection of biology and mathematics involves numerous real experiments to demonstrate the capability of the proposed method in detecting biologically relevant information and its reliable signals while avoiding false positives. The outcome provides a coherent theoretical framework for analyzing biological networks.

Coherent theoretical framework for analyzing whole networks

In the fruit fly experiment described above, the entire genetic interaction involves five different gene types or bacteria, with each genotype comprising a combination of 32 genes. This data set serves as the foundation for drawing conclusions about the life expectancy of the fly. An important consideration is, what happens when additional genes or parameters occur–a common real-life scenario. Due to its coherent geometric superstructure, the new method provides a flexible framework for detecting and describing deviating scenarios, something unattainable in previous experiments and mathematical modeling, which required a separate evaluation for each individual experiment.

“We are excited to contribute to describing biological results in a mathematical language. Through our geometric-statistical analysis method, we hope to provide a powerful tool for exploring biological networks in higher dimensions. It has proven to be an excellent way of identifying the master regulators of networks. By applying the new high-dimensional geometric approach, which quantifies epistasis in a fitness landscape, we were able to decipher how individual genes and species influence interactions in the broader biological network,” concludes Michael Joswig.

The microbiotic composition in the gut significantly influences life expectancy, and it would be desirable to apply this new quantification method to humans as well. However, due to the vast number of bacteria in the human gut, this is not yet possible. The scientists hope that future developments using simpler methods, in combination with classic transformation processes, could pave the way for applications such as the development of customized drugs.

 



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2300634120

Article Title

Master regulators of biological systems in higher dimensions

Article Publication Date

14-Dec-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.