• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A new law in laser physics could make eye surgery simpler

Bioengineer by Bioengineer
May 25, 2020
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New soliton laser pulses deliver high energy in a trillionth of a second

IMAGE

Credit: Louise Cooper/University of Sydney

Scientists have developed a new type of laser that can deliver high amounts of energy in very short bursts of time, with potential applications in eye and heart surgery or the engineering of delicate materials.

The Director of the University of Sydney Institute of Photonics and Optical Science, Professor Martijn de Sterke, said: “This laser has the property that as its pulse duration decreases to less than a trillionth of a second, its energy could go through the roof.

“This makes them ideal candidates for the processing of materials that require short, powerful pulses. One application could be in corneal surgery, which relies on gently removing material from the eye. This requires strong, short light pulses that do not heat and damage the surface.”

The research is published today in Nature Photonics.

The scientists have achieved this remarkable result by returning to a simple laser technology that is common in telecommunications, metrology and spectroscopy. These lasers use an effect known as soliton waves, which are waves of light that maintain their shape over long distances.

Solitons were first identified in the early 19th century, not in light but in water waves in the industrial canals of England.

“The fact that soliton waves in light maintain their shape means they are excellent for a wide range of applications, including telecommunications and spectrometry,” said lead author Dr Antoine Runge from the School of Physics.

“However, while lasers producing these solitons are simple to make, they do not pack much punch. A completely different – and expensive – physical system is required to produce the high-energy optical pulses used in manufacturing.”

Co-author Dr Andrea Blanco-Redondo, Head of Silicon Photonics at Nokia Bell Labs in the US, said: “Soliton lasers are the most simple, cost-effective and robust way to achieve these short bursts. However, until now, conventional soliton lasers could not deliver enough energy.

“Our results have the potential to make soliton lasers useful for biomedical applications,” said Dr Blanco-Redondo, who was previously at the University of Sydney Nano Institute.

This research builds on earlier work established by the team at the University of Sydney Institute for Photonics and Optical Science, which published its discovery of pure-quartic solitons in 2016.

A new law in laser physics

In a normal soliton laser, the energy of light is inversely proportional to its pulse duration, demonstrated by the equation E = 1/Ï„. If you halve the pulse time of the light, you get twice the amount of energy.

Using quartic solitons, the energy of light is inversely proportional to the third power of the pulse duration, or E = 1/τ3. This means if your pulse time is halved, the energy it delivers in that time is multiplied by a factor of eight.

“It is this demonstration of a new law in laser physics that is most important in our research,” Dr Runge said. “We have shown that E = 1/Ï„3 and we hope this will change how lasers can be applied in the future.”

Establishing this proof of principle will enable the team to make more powerful soliton lasers.

Dr Blanco-Redondo said: “In this research we produced pulses that are as short as a trillionth of a second, but we have plans to get much shorter than that.”

“Our next goal is to produce femtosecond duration pulses – one quadrillionth of a second,” Dr Runge said. “This will mean ultra-short laser pulses with hundreds of kilowatts of peak power.”

Professor De Sterke said: “We hope this type of laser can open a new way to apply laser light when we need high peak energy but where the base material is not damaged.”

###

DOWNLOAD images of the research team and a copy of the research at this link.

INTERVIEWS

Dr Antoine Runge | [email protected]

School of Physics

The University of Sydney

Professor Martijn De Sterke | [email protected]

Director, Institute of Photonics and Optical Science | Sydney Nano

School of Physics

The University of Sydney

Dr Andrea Blanco-Redondo | [email protected]

Director of Silicon Photonics

Nokia Bell Labs, New Jersey, USA

MEDIA ENQUIRIES

Marcus Strom | [email protected] | +61 423 982 485

DECLARATION

This work was supported by the Australian Research Council (ARC) Discovery Project (grant no. DP180102234), the University of Sydney Professor Harry Messel Research Fellowship and the Asian Office of Aerospace R&D (AOARD) (grant no. FA2386-19-1-4067).

Media Contact
Marcus Strom
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41566-020-0629-6

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    134 shares
    Share 54 Tweet 34
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Runting Causes and Impacts in Poultry Hatcheries

Post-Fire Growth Insights of Cyathea Mexiae in Brazil

Pollinators Use Sight and Smell for Flower Identification

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.