• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A new invisibility cloak to conceal objects in diffusive atmospheres is devised

Bioengineer by Bioengineer
January 23, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

As Carlos García-Meca of the UPV's Centre for Nanophotonic Technology explained, diffusive environments are those in which the light is not propagated in a straight line, but bounces around. "To provide some cases closer to us, a diffusive environment would be what we find on a foggy day, in cloudy water or in a place with smoke, but also in our organic tissue. Our proposal establishes the bases, for example to make a plane in the fog or a submarine in the sea undetectable," stressed García-Meca.

The NUP-UPNA and UPV researchers have conducted a simulation of this new invisibility cloak and will soon be working to build it in the lab. "It would be fairly straightforward because all we would need is two different materials with a specific diffusivity; by playing around with them we would be capable of producing the cloak that would cause the light to circulate around the object in such a way that the object would end up hidden. We could achieve perfect invisibility; but only for diffusive atmospheres, of course," stressed the lead researcher Bakhtiyar Orazbayev, who is conducting his work at the Public University of Navarre.

Background

The idea of making an object invisible by surrounding it in a special material capable of making the light bend around it was proposed about a decade ago. Since then, scientists have discovered that producing a device of this type is fraught with difficulties from a fundamental as well a technological point of view.

"It has recently been shown that this difficulty disappears if the object one is intending to conceal is in a diffusive environment. In this case, and unlike in non-diffusive atmospheres, it is possible to build, in a fairly straightforward way, invisibility cloaks of a macroscopic size that work for any light direction and on a high bandwidth. However, the cloaks proposed so far do not work properly when the object is illuminated by short light pulses, essential in a large number of applications," pointed out Alejandro Martínez-Abiétar, researcher at the Centre for Nanophotonic Technology.

Solution

The proposal devised by the UPV and NUP-UPNA researchers solves this problem by taking a different approach based on a technique known as transformation optics, which enables one to know which material is best suited to creating the cloak and concealing the object.

The devices have several applications which cannot be tackled by means of any previous design. "Apart from the ones already mentioned, they would render invisible objects susceptible to causing interference in communication systems and in image tomography systems in which work is often done with diffusive mediums such as organic tissue," concluded Miguel Beruete, a researcher at the Public University of Navarre.

###

Media Contact

Oihane Lakar
[email protected]
34-943-363-040

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Improved Detection of FMR1 CGG Repeats via Novel Assay

September 12, 2025

Unraveling Defect Dynamics in Zn-Doped CuO

September 12, 2025

Gal-9 on Leukemia Stem Cells Predicts Prognosis

September 12, 2025

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improved Detection of FMR1 CGG Repeats via Novel Assay

Unraveling Defect Dynamics in Zn-Doped CuO

Gal-9 on Leukemia Stem Cells Predicts Prognosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.