• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A new direction in ophthalmic development: Nanoparticle drug delivery systems

Bioengineer by Bioengineer
January 3, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Most ophthalmic diseases are usually treated with topically administered drug formulations (e.g. eye drops). Their main disadvantage is the short time of contact with the eye, which leads to a low degree of absorption of the active substance (less than 5% of the drug administered). This requires frequent instillation, which usually leads to a high systemic exposure. ?he eye as an anatomical structure is an extremely protected organ. In this regard, providing an optimal bioavailability in the eye tissues, resulting in the desired therapeutic effect represents a major challenge.

The purpose of this review is to indicate how nano- and microcarriers of drug substances can solve the problems with the drug delivery in the ocular tissues, to indicate the possible hazards and side effects, depending on the polymer nature and route of administration, and to visualize the future potential of these carriers in the pharmaceutical practice.

Nanocarriers may (i) improve solubility (of nanosuspensions, and microemulsions); (ii) improve permeability and; (iii) provide a better prevention from metabolism and elimination (through polymer conjugation, and mucoadhesive polymers),; (iv) enhance drug stability; and (v) improve pharmacokinetics of the drug used. However, each one of these types of nanoformulations is characterized by some drawbacks. The additional combination of two drug delivery systems, i.e., nanoparticles in an in-situ gel or in contact lens, may increase the positives and decrease the disadvantages of these drug delivery systems.

The assessment of potential health hazards for the use of nanoparticles as ophthalmic drug delivery systems is based on the properties or the toxicity of the bulk material, the characteristics and properties of the nanoparticles obtained and the route of their administration. The study, regarding the safety and cytotoxicity of nanoparticles, should be specific and thorough in the context of the patho-anatomical and pathophysiological characteristics of the eye as a target organ.

Over the last years, we have witnessed a dramatic increase of in the number of patented nanosized ophthalmic drug delivery systems. The undeniable advantages that these systems provide, as anin terms of improved precorneal residence time and ocular penetration, a sustained drug release, a reduced administration frequency and a higher patient compliance, give us grounds to believe that in the next few years some of these patented systemsm will find their place on in the ophthalmic drug market.

###

For more information about the article, please visit http://benthamscience.com/journals/current-pharmaceutical-design/article/144800/

Reference: Andonova, VY.; (2016). A New Direction in Ophthalmic Development: Nanoparticle Drug Delivery Systems. Current Pharmaceutical Design, DOI: 10.2174/1381612822666160813234723

Media Contact

Faizan ul Haq
[email protected]
@BenthamScienceP

http://benthamscience.com/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

September 12, 2025

Nanomedicine: A New Frontier in Targeting Metastasis

September 12, 2025

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

September 12, 2025

New Phthalide Compounds Show Promise as Antifungal Agents

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

Nanomedicine: A New Frontier in Targeting Metastasis

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.