• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A new computer model explores how proteins are controlled ‘at a distance’

Bioengineer by Bioengineer
February 20, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Matthieu Wyart/EPFL

EPFL scientists have created a new computer model that can help better design of allosteric drugs, which control proteins "at a distance".

Enzymes are large proteins that are involved in virtually every biological process, facilitating a multitude of biochemical reactions in our cells. Because of this, one of the biggest efforts in drug design today aims to control enzymes without interfering with their so-called active sites — the part of the enzyme where the biochemical reaction takes place. This "at a distance" approach is called "allosteric regulation", and predicting allosteric pathways for enzymes and other proteins has gathered considerable interest. Scientists from EPFL, with colleagues in the US and Brazil, have now developed a new mathematical tool that allows more efficient allosteric predictions. The work is published in PNAS.

Allosteric drugs

Allosteric regulation is a fundamental molecular mechanism that modulates numerous cell processes, fine-tuning them and making them more efficient. Most proteins contain parts in their structure away from their active site that can be targeted to influence their behavior "from a distance". When an allosteric modulator molecule — whether natural or synthetic — binds such a site, it changes the 3D structure of the protein, thereby affecting its function.

The main reason allosteric sites are of such interest to drug design is that they can be used to inhibit or improve the activity of a protein, eg. the binding strength of an enzyme or a receptor. For example, diazepam (Valium) acts on an allosteric site of the GABAA receptor in the brain, and increases its binding ability. Its antidote, flumazenil (Lanexat), acts on the same site, but instead inhibits the receptor.

Generally speaking, an allosteric drug would also be used at a comparatively lower dose than a drug acting directly on the protein's active site, thus providing more effective treatments with fewer side effects.

Developing an allosteric model

Despite the importance of allosteric processes, we still do not fully understand how a molecule binding on a distant and seemingly unimportant part of a large protein can change its function so dramatically. The key lies in the overall architecture of the protein, which determines what kinds of 3D changes an allosteric effect will have.

The lab of Matthieu Wyart at EPFL sought to address several questions regarding our current understanding of allosteric architectures. Scientists classify these into two types: hinges, which cause scissor-like 3D changes, and shear, which involve two planes moving side-by-side. Despite being clear mechanically, the two models do not capture all cases of allosteric effects, where certain proteins cannot be classified as having either hinge or shear architectures.

The researchers explored alternative allosteric architectures. Specifically, they looked at the structure of proteins as randomly packed spheres that can evolve to accomplish a given function. When one sphere moves a certain way, this model can help scientists track its structural impact on the whole protein.

Using this approach, the scientists addressed several questions that conventional models do not answer satisfactorily. Which types of 3D "architecture" are susceptible to allosteric effects? How many functional proteins with a similar architecture are they? How can these be modeled and evolved in a computer to offer predictions for drug design?

Using theory and computer power, the team developed a new model that can predict the number of solutions, their 3D architectures and how the two relate to each other. Each solution can even be printed in a 3D printer to create a physical model.

The model proposes a new hypothesis for allosteric architectures, introducing the concept that certain regions in the protein can act as levers. These levers amplify the response induced by binding a ligand and allow for action at a distance. This architecture is an alternative to the hinge and shear designs recognized in the past. The computational approach can also be used to study the relationship between co-evolution, mechanics, and function, while being open to many extensions in the future.

###

This work involves a collaboration of EPFL's Physics of Complex Systems Laboratory with the University of California Santa Barbara and the Universidade Federal do Rio Grande do Sul in Brazil. It was funded by the National Science Foundation (NSF), the Swiss National Science Foundation (SNSF), and the Simons Foundation.

Reference

Le Yan, Riccardo Ravasio, Carolina Brito, Matthieu Wyart. Architecture and Co-Evolution of Allosteric Materials. PNAS 20 February 2017.

Media Contact

Nik Papageorgiou
[email protected]
41-216-932-105
@EPFL_en

http://www.epfl.ch/index.en.html

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Prof. Wei Lu Explores Infrared Physics Insights

September 19, 2025

Advances in Asthma Therapeutics Unveiled

September 19, 2025

Persistent Cough Reveals Mysterious Endobronchial Mass

September 19, 2025

Unlocking Lignocellulose Breakdown: Microbial Enzyme Insights

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prof. Wei Lu Explores Infrared Physics Insights

Advances in Asthma Therapeutics Unveiled

Persistent Cough Reveals Mysterious Endobronchial Mass

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.