• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A mutated eye offers a glimpse of a key protein for preventing cancer

Bioengineer by Bioengineer
August 9, 2022
in Biology
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Around 15 years ago, a group of researchers discovered mutant zebrafish. The eyes of these zebrafish did not develop correctly, resulting in them being significantly smaller than the eyes of wild zebrafish. Now, one of these researchers—Prof. Ichiro Masai—who leads the Developmental Neurobiology Unit at the Okinawa Institute of Science and Technology (OIST), alongside his former PhD student Dr. Swathy Babu, has used this mutation to understand the role of a protein in preventing cell death. This could have vast implications for the development of cancer therapy and for understanding how the cell cycle is regulated.

Cell division of wild type cells vs banp mutant cells

Credit: OIST

  • Researchers investigated the role of a protein that has been hypothesized to regulate the cell cycle, initiated DNA repair, and suppress tumors.
  • Zebrafish embryos, which develop outside the body of the parent, provided an ideal model for testing this hypothesis.
  • The results show that this protein promotes the expression of 31 genes, which has multiple direct and indirect impacts.
  • The researchers also revealed that without this protein operating as normal, DNA repair simply couldn’t take place.
  • They hope that this research will lead to further investigations of the links to cancer and cell cycle regulations.

Around 15 years ago, a group of researchers discovered mutant zebrafish. The eyes of these zebrafish did not develop correctly, resulting in them being significantly smaller than the eyes of wild zebrafish. Now, one of these researchers—Prof. Ichiro Masai—who leads the Developmental Neurobiology Unit at the Okinawa Institute of Science and Technology (OIST), alongside his former PhD student Dr. Swathy Babu, has used this mutation to understand the role of a protein in preventing cell death. This could have vast implications for the development of cancer therapy and for understanding how the cell cycle is regulated.

“Many cells that develop tumors reportedly have an issue with this protein,” said Prof. Masai, senior author of this research, which was published in eLife. “Furthermore, the importance of the protein for regulating the cell cycle and helping DNA repair has also previously been hypothesized, but not rigorously tested.”

Say the DNA of a cell is damaged. When the process of replicating the DNA to duplicate the cell takes place, the replication will halt at the damaged point. The cell will then activate a number of proteins to try to repair the DNA in multiple different ways. But if all the pathways that the cell utilizes fail, the cell will die. Prof. Masai hypothesized that they were seeing an increase in the number of cell deaths in the zebrafish mutants, which resulted in the eyes not developing properly.

Enter banp, a protein that’s been thought by researchers for some time to be involved in suppressing tumors and regulating the cell cycle. However, all previous research had been conducted on cell cultures as deleting the gene in mice or other model organisms resulted in the embryo dying. But zebrafish embryos, which develop outside the body of the parent, provided an ideal model for testing the theory.

For her PhD in the Developmental Neurobiology Unit, Dr. Babu looked at the role that banp played in regulating the cell cycle. The gene that encodes the banp protein is located on chromosome 25. First, the researchers sequenced the banp gene from the mutated fish and found an extensive mutation on the gene. They then took developing zebrafish that did not carry this mutation and introduced another mutation onto the banp gene. The resulting zebrafish also had eyes that did not develop correctly. This added to their theory that banp plays a key role in repairing DNA.

The next question regarded what banp did and how the mutations impacted the development of an organism. Recently, when banp was reported as an important protein for converting DNA to RNA, the researchers decided to compare the expressed genes in mutant zebrafish with those of the wild-type zebrafish. They found that banp seemed to promote the expression of 31 genes, which had multiple direct and indirect impacts. Specifically, the researchers in this study looked at different mechanisms that the cell would utilize to repair the DNA during cell proliferation. They found that each of these mechanisms required proteins produced by the banp gene that wasn’t produced to the same extent in the mutated version. Without banp operating as usual, DNA repair simply couldn’t take place.

“Banp seems to be a multiple regulator, influencing many different proteins, from DNA repair to cell duplication to tumor suppression,” said Dr. Babu, first author of the research paper.

Thus, a mutation on the banp gene seems to be linked to cell death. The scientists hope that this research will lead to further investigations of the links to cancer and cell cycle regulations.



Journal

eLife

DOI

10.7554/eLife.74611

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Banp regulates DNA damage response and chromosome segregation during the cell cycle in zebrafish retina

Article Publication Date

9-Aug-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.