• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A moth and its flame: Mate selection found to evolve from response to flower odors

Bioengineer by Bioengineer
August 15, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For moths, love is literally in the air through the action of pheromones to attract mates.

Virgin females release a perfumery concoction, specially blended to attract males from the same species, even over long distances.

To date, little is known on how males evolved to heed their siren's call.

In general, pheromone compounds in moths and other insects are detected by specialized receptors that generally do not respond to plant volatiles.

Pheromones and other odorants are detected by odorant receptors (ORs) expressed in olfactory sensory neurons found most prominently within the insect antennae.

In moths, there are four major groups of pheromones classified by their chemistry and how the compounds are biosynthesized. The pheromones of old moth lineages, Type 0, are thought to represent the ancestral state of moth pheromones. Type 0 pheromones all have short carbon chains and they are remarkably similar to many common plant volatiles.

Now for the first time, Jothi Yuvaraj and colleagues at Lund University, Sweden, have identified the corresponding pheromone receptors (PRs) from a primitive leafminer moth, called Eriocrania semipurpurella.

Then, they show that these receptors also respond to plant odors and propose a scenario in which pheromone receptors evolved from plant odor receptors.

"Our results suggest that PRs for Type 0 pheromones have evolved from ORs that detect structurally-related plant volatiles," said professor Christer Löfstedt. "They are unrelated to PRs detecting pheromones in advanced Lepidoptera, which, in turn, also independently may have evolved a novel function from ORs detecting plant volatiles."

The authors, therefore, propose that not only have the pheromone receptors of this basal moth evolved from ORs that recognize plant odorants but that the same might be true of the canonical pheromone receptors of more derived moths.

"Our results suggest that sex pheromone receptors in Lepidoptera have evolved sex pheromone detecting functions from ORs detecting plant volatiles on multiple occasions," said Jothi Yuvaraj.

The new study advances our understanding of the evolution of moth pheromone sensory systems in general and primitive moths in particular.

###

Media Contact

Joseph Caspermeyer
[email protected]
480-258-8972
@OfficialSMBE

http://mbe.oxfordjournals.org/

http://dx.doi.org/10.1093/molbev/msx215

Share12Tweet7Share2ShareShareShare1

Related Posts

Aureobasidium Boosts Citrus Pectin’s Antioxidant Power

Aureobasidium Boosts Citrus Pectin’s Antioxidant Power

October 28, 2025
blank

Killer Whale Genomes Reveal Long-Term Mutation Purging

October 28, 2025

AAAS Expands Science Partner Journal Program with Launch of Cancer Communications

October 28, 2025

Z-GENIE: Easy Tool for Predicting Z-DNA Regions

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

N-glycosylation of IgG: A Stroke Risk Predictor

The Importance of Body Clocks for Heart Health

Examining Frailty, Multimorbidity, Sleep, and Anxiety in Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.