• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A molecular pressure cooker tenderizes tough pieces of protein and helps to bite off

Bioengineer by Bioengineer
April 28, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: NINS/IMS

Proteins are composed of amino acids connected by amide bonds. The amide bond exhibits high chemical stability and has a planar structure around the bond. Although the high stability of amide bond is indispensable to maintain protein functions, it is problematic to convert the building block into some other molecular species by selective dissociation of a relevant amide bond. There have been attempted to control reactivity of a specific amide bond with selective twisting of the bond by complicated chemical modifications. Some model compounds with twisted amide bonds have been produced by multi-step organic synthesis and their high reactivity has been demonstrated. It is presumed that the high reactivity of these twisted amide bonds is also used in vivo. Some proteins seem to be selectively cleaved by twisting specific amide bonds during autolysis and splicing. These proteins, unlike artificially synthesized model compounds, are supposed to use non-covalent interactions to twist their amide bonds. The researchers at the University of Tokyo and Institute for Molecular Science have fabricated for many years their molecular cages, which are self-assembled by the non-covalent interactions. They applied their molecular cages to confine amide molecules, which can be regarded as analogs of small pieces of proteins, and squeezed the amide bonds by pressurizing them inside their cage.

The researchers have reported in the present paper that amide bonds, which have planar structures and are inert in free space, can be twisted and the amide compounds can be activated by confining them into their molecular cage (shown in Figure). When target amide compounds and the molecular cage are mixed and heated in an aqueous solution, the cage confines the amide compounds. Single-crystal X-ray structure analysis revealed that two amide compounds with twisted structures are confined in the cage. The twist angle around the amide bonds was found to reach 34 degrees. The reaction rate of hydrolysis of the twisted target was accelerated by a factor of five. The researchers succeeded in creating a new artificial enzyme of unexploited mechanism that it confines and twists the target molecules to activate a specific chemical bond.

The researchers also succeeded in altering the reactivity of target molecules by confining “stuffing molecules”, which are not involved in the reaction, together with the targets in the cage, thereby precisely controlling the degree of twisting of the amide bonds. Without the stuffing molecule, the two of target amides are confined in one cage. One of the two targets is twisted and another one remains planar. In contrast, when conical stuff is mixed and then involved together with the target in one cage, the target remains planar. When a planar stuffing molecule is involved with the target, the stuff changes the shape of target into a twisted structure. The researchers investigated the reaction rates of hydrolysis in the two cases and found that the planar stuff (twisted target) accelerate the rate by 14 times, while the conical stuff (planar target) accelerated the rate by three times. The stuffing molecules allows us to tune the reaction rate precisely. This is an unprecedented achievement which has never been found in previous researches. This research gives us a novel method for the activation of inert molecules and can be applied to a variety of organic reactions.

The researchers showed that the amide molecules can be activated by twisting inside the cage without cumbersome chemical modification processes. “We are looking for new type of cages which can activate the targets with higher efficiency and apply them to other categories of target molecules. With our new cages, we will develop the novel activation method of inert molecules. In the future, our cages will be used as catalysts, which selectively squeeze and activate a specific bond of a target molecule and also as activation agents for prodrugs working in our body,” said Fujita.

###

Media Contact
Makoto Fujita
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41557-020-0455-y

Tags: BiochemistryChemistry/Physics/Materials SciencesMolecular PhysicsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Peripheral T-Cell Lymphoma in Saudi Arabia: Outcomes Revealed

Peripheral T-Cell Lymphoma in Saudi Arabia: Outcomes Revealed

August 22, 2025
Human Milk Vesicles Boost Fat Burning via Mitochondria

Human Milk Vesicles Boost Fat Burning via Mitochondria

August 22, 2025

Gut-Brain Link: How NEC Affects Newborn Brains

August 22, 2025

Microscopy Reveals Details of Anterior Human Eye

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Peripheral T-Cell Lymphoma in Saudi Arabia: Outcomes Revealed

Human Milk Vesicles Boost Fat Burning via Mitochondria

Gut-Brain Link: How NEC Affects Newborn Brains

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.