• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A molecular garbage disposal complex has a role in packing the genome

Bioengineer by Bioengineer
October 10, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research from the Korea Institute of Science and Technology, to be published in the Journal of Biological Chemistry on Oct. 13, has found that the proteasome, an essential protein complex that breaks down proteins in cells, has another unexpected function: directly regulating the packing of DNA in the nucleus.

The proteasome breaks down proteins that the cell has tagged for degradation in a process called proteolysis. Dysfunction in the proteasome has been observed in diseases of many physiological systems, from the immune, nervous and cardiovascular systems to the whole organism's aging processes. Increasing research suggests that, like a Swiss army knife with hidden tools, the proteasome is able to perform additional functions that don't involve proteolysis.

DNA is organized in the nucleus in complexes with protein in the nucleus in a form called chromatin. Broadly speaking, loosely packed chromatin, or euchromatin, allows DNA to be transcribed and genes to be expressed, whereas tightly packed heterochromatin prevents gene expression.

In experiments using yeast cells, Hogyu David Seo, a graduate student in Daeyoup Lee's lab, found that the proteasome could induce heterochromatin to form in some parts of the genome but stop it from spreading to other regions. Surprisingly, the mutations in the proteasome that revealed the proteasome's effects on chromatin had no effect on proteolysis, meaning that the proteasome affects heterochromatin through an activity other than proteolysis. How it does this is not yet known.

"[The proteasome] can exert force on proteins and translocate, tilt, bend them," Seo said. "So I believe the proteasome physically modulates proteins that act as a shield for heterochromatin. That's how I think it might work."

Heterochromatin formation and spread is of interest in the field of epigenetics, because changes in the chromatin state of cells in one generation can potentially be passed on to the next generation.

"[The proteasome] may have some effect on epigenetic programming inheritance because it affects the spreading of heterochromatin," Seo said. "I'm not really sure how it might work, because there are so many ways that it could act, but I'm sure that it may exert some effects on epigenetic programming."

For now, the team is focusing on understanding how the proteasome regulates heterochromatin in organisms besides yeast, including mice and human cells.

"The proteasome engages with virtually every protein in our body with respect to the protein-degradation function," Lee said. "We believe that our work is just a glimpse of what this protein can do…Dissecting the proteasome functions will definitely help to develop therapeutic strategies to various diseases, such as neurological diseases and cancer."

###

About the Journal of Biological Chemistry

JBC is a weekly peer-reviewed scientific journal that publishes research "motivated by biology, enabled by chemistry" across all areas of biochemistry and molecular biology. The read the latest research in JBC, visit http://www.jbc.org/.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit http://www.asbmb.org.

Media Contact

Sasha Mushegian
[email protected]
@asbmb

http://www.asbmb.org

http://dx.doi.org/10.1074/jbc.M117.790824

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Mitochondrial Genomes Reveal Invasive Scale Insect Evolution

November 6, 2025
West Coast Mammal-Eating Killer Whales Comprise Two Distinct Communities That Seldom Interact

West Coast Mammal-Eating Killer Whales Comprise Two Distinct Communities That Seldom Interact

November 6, 2025

Exploring the Brain: A Revolutionary 3D Atlas of Neural Connections

November 6, 2025

USF Health Researcher Leads International Team to Secure Multi-Million Dollar Research Grant

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ferroptosis in Diabetes: Insights from Research

Berberine boosts CYP3A4 expression through PXR activation

Novel Rhodanine–Sulfonate Compounds Inhibit Aldose Reductase

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.