• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A method for storing vaccines at room temperature

Bioengineer by Bioengineer
November 30, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: iStock

Shipping vaccines in an unbroken temperature-controlled supply chain (a "cold chain") all the way to recipients is a major logistical and financial challenge in remote areas and developing countries. According to Doctors Without Borders, the need to keep vaccines within a temperature range of 2-8°C is one of the main factors behind low immunization-coverage rates.

Researchers at EPFL's Supramolecular Nanomaterials and Interfaces Laboratory (SUNMIL), in collaboration with scientists in Milan, Turin, Leiden, and Oregon, have come up with three simple and inexpensive vaccine additives to get around this obstacle. Using minute quantities of nanoparticles, or FDA-approved polymer (polyethylene glycol), or higher amounts of sucrose, they were able to stabilize vaccines at room temperature for several weeks or, in some cases, months. Their approach, which was successfully tested on a vaccine for rodents, is published in Nature Communications.

Nanoparticles, polymers and sugar

The study addressed viral-vector vaccines, the most common type of vaccine, which normally only last for a few days at room temperature. At that point, the viral components of the vaccines lose their structural integrity. "These components fluctuate by their very nature," Stellacci, head of SUNMIL – Constellium Chair. "They are combined in a stable form, and the low temperature maintains that balance. But the thermally induced fluctuations eventually lead to a loss of integrity of the viral vector." The scientists' approach, which consists of stabilizing the vaccines against such fluctuations through simple biocompatible additives, has delivered excellent results.

In their first approach, osmotic pressure is applied on the inactivated viruses (the main component of the vaccine) using a cloud of negatively charged nanoparticles. The virus is already subject to an outward osmotic pressure due to its genetic material (RNA or DNA), which has a high negative charge and is held inside the virus. The nanoparticles form a cloud of negatively charged objects that cannot enter the virus, thus generating counter-osmotic pressure that keeps the virus intact. "With this method, infectivity for a virus reached a half-life of 20 days," says Stellacci.

The second approach consists in stiffening the virus's capsid, which envelops the inactivated virus, by adding polymers. This additive mainly stabilizes the virus by slowing its oscillations by changing the stiffness of the capsid. As a result, the vaccine remained fully intact for 20 days with an estimated half-life of ~70 days.

Finally, adding sucrose, a common sugar, to the vaccine makes the environment more viscous and slows down fluctuations. "It's a little like adding honey, where all motion is slowed down," says Stellacci. With this third approach, 85% of the vaccine's properties were intact after 70 days.

Tests on the Chikungunya virus

Using these results, the researchers applied their methods to a vaccine that is currently in development. They were able to stabilize a vaccine against Chikungunya, a tropical virus, for 10 days, and then successfully inoculated mice with it. "The next step will be to run more extensive tests on specific vaccines, possibly combining the three different approaches."

Cheaper access

This study could really impact the effort to increase immunization coverage. Currently, in areas where electricity and refrigeration are limited, vaccines are moved from one refrigerated space to the next and then delivered to recipients in coolers. This complicated process accounts for nearly 80% of the cost of vaccination programs. And that, up until now, has been a significant impediment.

###

Source: M. Pelliccia, P. Andreozzi, J. Paulose, M. D'Alicarnasso, V. Cagno, M. Donalisio, A. Civra, R. M. Broeckel, N. Haese, P. Jacob Silva, R P. Carney, V. Marjoma, D. N. Streblow, D. Lembo, F. Stellacci, V. Vitelli & S. Krol. Additives to improve thermal stability of adenoviruses from hours to months: implications for vaccine storage. Nature Communications

Media Contact

Francesco Stellacci
[email protected]
41-216-937-872
@EPFL_en

http://www.epfl.ch/index.en.html

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Zeolite-Template Chemical Space: A Comprehensive Mapping

Exploring Zeolite-Template Chemical Space: A Comprehensive Mapping

October 5, 2025

Exploring Home-based HPV Self-Sampling Acceptance in Cameroon

October 5, 2025

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

October 5, 2025

Psychological Resilience Mediates Care in Nursing Interns

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Zeolite-Template Chemical Space: A Comprehensive Mapping

Exploring Home-based HPV Self-Sampling Acceptance in Cameroon

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.