• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A look inside ancient fish heads

Bioengineer by Bioengineer
July 12, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The evolution of the brain and nervous system in animals has been wound back more than 400 million years, thanks to the examination of fossil remains of ancient lungfish providing a missing link in the emergence of land-living, four-legged animals on Earth. 

Fishy cousins

Credit: Courtesy A Clement, Flinders University

The evolution of the brain and nervous system in animals has been wound back more than 400 million years, thanks to the examination of fossil remains of ancient lungfish providing a missing link in the emergence of land-living, four-legged animals on Earth. 

An international study, led by Flinders University in Australia, has compared detailed 3D models of cranial endocasts from six Paleozoic lungfish (Dipnoi) fossils to the brain spaces of the surviving sister group of land vertebrates, to better understand brain evolution of lungfishes.

This in turn can aid interpretation of the earliest tetrapods, which later moved from water to land on four legs, says lead author Dr Alice Clement from Flinders University.    

The discovery, described in the international journal eLife, showcases the evolutionary history of these lobe-finned fish (Sarcopterygii) and reveals how the olfactory region appears to be more highly plastic than the hindbrain, and undergoes significant elongation in several taxa.

“Our discovery shows that the brains of lungfish have been evolving constantly throughout their 400-million-year history, but it suggests they have likely always relied on their sense of smell rather than vision to navigate their environments. This is quite unlike other fish which use sight much more powerfully,” says Dr Clement from the Flinders University Ecology and Evolution (Palaeontology) research lab.

“She says that understanding how lungfish brains have changed throughout their evolutionary history helps an understand of what the brains of the first tetrapods (our land-based ancestors) might have looked like too – this can give us an idea of which senses were more important than others (such as vision vs olfaction).”

For this study, the researchers from Australia, with co-authors in the UK, Canada and Sweden, used powerful imaging methods to reconstruct these brain models virtually. 

Senior author Dr Tom Challands, from the University of Edinburgh in Scotland, says the ongoing work is significant in broad evolutionary and palaeontological science.  

“This paper effectively doubles the number of lungfish endocasts known, as their preservation quality is often damaged by a fossil being crushed or broken, and the brain itself has very poor preservation potential and is not currently known in any fossil lungfish,” he says.

“Lungfish have persisted for more than 400 million years from the Devonian Period to present day and provide unique insights into the condition of the earliest tetrapods as well as their own evolutionary history.”

With the use of X-ray tomography as a palaeontological tool, the cranial endocasts of six Palaeozoic lungfish (Iowadipterus halli, Gogodipterus paddyensis, Pillararhynchus longi, Griphognathus whitei, Orlovichthys limnatis and Rhinodipterus ulrichi) could be studied non-destructively. The fossils come from Australia, the US, Russia and Germany.

The six fossil and two extant taxa were subject to a 12-taxon data set for multivariate morphometric analysis using 17 variables.  

“Studying our ‘fishy cousins’ lungfish continues to help us understand how fish first left the water some 350 million years ago and started to become land animals (tetrapods), and later humans. Perhaps some of their nervous system traits remain in us still,” Dr Clements says.

The article – Morphometric analysis of lungfish endocasts elucidates early dipnoan palaeoneurological evolution (2022) by Alice M Clement, Tom J Challands, Richard Cloutier, Laurent Houle, Per E Ahlberg, Shaun P Collin and John A Long – has been published in the eLife DOI: 10.7554/eLife.73461.

Acknowledgements: This research was supported by Australian Research Council grants DP160102460 and DP200103398, Flinders University, a Wallenberg Scholarship from the Knut and Alice Wallenberg Foundation, a Discovery Grant from Natural Sciences and Engineering Research Council of Canada, and Callidus Services Ltd UK.



Journal

eLife

DOI

10.7554/eLife.73461

Method of Research

Computational simulation/modeling

Subject of Research

Animals

Article Title

Morphometric analysis of lungfish endocasts elucidates early dipnoan palaeoneurological evolution

COI Statement

The authors declare no conflict of interest

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

CircCOG5 Regulates Ferroptosis in Ovarian Cancer

August 27, 2025
blank

Heat Stress Impact on Aged Hens’ Health and Performance

August 27, 2025

Achieving Weight Goals Within Four Years: A Scientific Breakthrough

August 27, 2025

Exploring Fungal Diversity via Metabarcoding Techniques

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Performance MoS2/rGO Nanocomposite for Oxygen Evolution

Exploring Depression’s Impact on Blood Sugar Control

Polyions and Polyelectrolyte Complexes: Advancements for Brain Therapies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.