• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A light-activated remote control for cells

Bioengineer by Bioengineer
April 17, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

What if doctors had a remote control that they could use to steer a patient’s own cells to a wound to speed up the healing process? Although such a device is still far from reality, researchers reporting in the ACS journal Nano Letters have taken an important first step: They used near-infrared light and an injected DNA nanodevice to guide stem cells to an injury, which helped muscle tissue regrow in mice.

Complex signaling pathways coordinate cellular activities such as movement, proliferation and even death. For example, when signaling molecules bind to proteins called receptor tyrosine kinases on a cell’s surface, they trigger the receptors to form pairs and phosphorylate each other. This process can activate other proteins that ultimately lead to a cell moving or growing. Hong-Hui Wang, Zhou Nie and colleagues wondered if they could introduce a nanodevice to cells that would rewire this system, causing receptors to become activated by near-infrared light instead of signaling molecules. The researchers chose near-infrared because it can go through living tissues, unlike ultraviolet or visible light. The team targeted a receptor tyrosine kinase called MET, which is essential for wound healing.

The researchers designed a DNA molecule that can bind to two MET receptors simultaneously, linking them together and activating them. To make the system responsive to light, the team attached multiple copies of the DNA sequence to gold nanorods. When illuminated with near-infrared light, the nanorods heated up and released the DNA so that it could activate the receptors. The researchers injected the DNA-bound gold nanorods into mice at the site of an injury and shone a near-infrared light on the mice for a few minutes. After three days, more muscle stem cells had migrated to the wound in treated mice than in control mice. The treated mice also showed increased signs of muscle regeneration compared with untreated mice.

###

The authors acknowledge funding from the National Natural Science Foundation of China, National Science and Technology Major Project, the Young Top-Notch Talent for Ten Thousand Talent Program, they Keypoint Research and Invention Program of Hunan Province and the National Institutes of Health.

The abstract that accompanies this study is available here.

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through it’s multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]

Tags: Cell BiologyChemistry/Physics/Materials SciencesGene TherapyGenesGeneticsNanotechnology/MicromachinesTrauma/Injury
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Bacterial Diversity Across Developmental Stages of Anopheles subpictus

August 5, 2025
blank

Nigella sativa Nanoparticles: Fighting Bacteria, Oxidants, and Mosquitoes

August 5, 2025

Decoding Black Garlic’s Chemistry and Health Benefits

August 5, 2025

Species Extinction Threatens the Unique Biodiversity of Macaronesia

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bacterial Diversity Across Developmental Stages of Anopheles subpictus

CT Scans: Raised Arms Improve Clavicle Age Estimates

Nigella sativa Nanoparticles: Fighting Bacteria, Oxidants, and Mosquitoes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.