• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A great new way to paint 3D-printed objects

Bioengineer by Bioengineer
April 28, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Efficient painting method reaches nooks and crannies

IMAGE

Credit: Jonathan P. Singer/Rutgers University-New Brunswick.

Rutgers engineers have created a highly effective way to paint complex 3D-printed objects, such as lightweight frames for aircraft and biomedical stents, that could save manufacturers time and money and provide new opportunities to create “smart skins” for printed parts.

The findings are published in the journal ACS Applied Materials & Interfaces.

Conventional sprays and brushes can’t reach all nooks and crannies in complex 3D-printed objects, but the new technique coats any exposed surface and fosters rapid prototyping.

“Our technique is a more efficient way to coat not only conventional objects, but even hydrogel soft robots, and our coatings are robust enough to survive complete immersion in water and repeated swelling and de-swelling by humidity,” said senior author Jonathan P. Singer, an assistant professor in the Department of Mechanical and Aerospace Engineering in the School of Engineering at Rutgers University-New Brunswick.

The engineers discovered new capabilities of a technology that creates a fine spray of droplets by applying a voltage to fluid flowing through a nozzle. This technique (electrospray deposition) has been used mainly for analytical chemistry. But in recent decades, it has also been used in lab-scale demonstrations of coatings that deliver vaccines, light-absorbing layers of solar cells and fluorescent quantum dots (tiny particles) for LED displays.

Using their approach, Rutgers engineers are building an accessory for 3D printers that will, for the first time, allow automated coating of 3D-printed parts with functional, protective or aesthetic layers of paint. Their technique features much thinner and better-targeted paint application, using significantly fewer materials than traditional methods. That means engineers can use cutting-edge materials, such as nanoparticles and bioactive ingredients, that would otherwise be too costly in paints, according to Singer.

Next steps include creating surfaces that can change their properties or trigger chemical reactions to create paints that can sense their environment and report stimuli to onboard electronics. The engineers hope to commercialize their technique and create a new paradigm of rapid coating immediately after printing that complements 3D printing.

###

Rutgers co-lead authors are Dylan A. Kovacevich, a master’s degree student, and Lin Lei, a doctoral student in Singer’s lab. Other Rutgers co-authors include doctoral student Daehoon Han (currently a postdoc at the University of Minnesota), Christianna Kuznetsova, an undergraduate student and Professor Howon Lee. A researcher at the Massachusetts Institute of Technology contributed to the study.

Media Contact
Todd Bates
[email protected]

Original Source

https://www.rutgers.edu/news/great-new-way-paint-3d-printed-objects

Related Journal Article

http://dx.doi.org/10.1021/acsami.9b23544

Tags: Biomedical/Environmental/Chemical EngineeringCardiologyInternal MedicineMechanical EngineeringNanotechnology/MicromachinesPublic HealthRobotry/Artificial IntelligenceTechnology/Engineering/Computer ScienceVaccines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Taar Expression in Mandarin Fish Response

October 28, 2025
blank

Uncovering Hidden Carbon Dioxide Absorption: Russian Scientists Reveal Plant Roots’ Secret Role

October 27, 2025

Bumblebees Respond to Female Signals in Short Range

October 27, 2025

Impact of Nitrogen Stress on Tobacco Metabolism

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating the Transition Module for Residential Care

M2 Macrophages Shield Lung Cancer from Plasma Stress

Probabilistic UAV Activation in Stochastic Geometry Networks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.