• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A glucose meter could soon say whether you have SARS-CoV-2 antibodies

Bioengineer by Bioengineer
June 16, 2022
in Health
Reading Time: 3 mins read
0
A glucose meter could soon say whether you have SARS-CoV-2 antibodies
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Over-the-counter COVID tests can quickly show whether you are infected with SARS-CoV-2. But if you have a positive result, there’s no equivalent at-home test to assess how long you’re protected against reinfection. In the Journal of the American Chemical Society, researchers now report a simple, accurate glucose-meter-based test incorporating a novel fusion protein. The researchers say that consumers could someday use this assay to monitor their own SARS-CoV-2 antibody levels.

A glucose meter could soon say whether you have SARS-CoV-2 antibodies

Credit: Adapted from Journal of the American Chemical Society 2022, DOI: 10.1021/jacs.2c02537

Over-the-counter COVID tests can quickly show whether you are infected with SARS-CoV-2. But if you have a positive result, there’s no equivalent at-home test to assess how long you’re protected against reinfection. In the Journal of the American Chemical Society, researchers now report a simple, accurate glucose-meter-based test incorporating a novel fusion protein. The researchers say that consumers could someday use this assay to monitor their own SARS-CoV-2 antibody levels.

Vaccines against SARS-CoV-2 and infection with the virus itself can guard against future infections for a while, but it’s unclear exactly how long that protection lasts. A good indication of immune protection is a person’s level of SARS-CoV-2 antibodies, but the gold standard measurement – the enzyme-linked immunosorbent assay (ELISA) – requires expensive equipment and specialized technicians.

Enter glucose meters, which are readily available, easy to use and can be integrated with remote clinical services. Researchers have been adapting these devices to sense other target molecules, coupling detection with glucose production. For example, if a detection antibody in the test binds to an antibody in a patient’s blood, then a reaction occurs that produces glucose — something the device detects very well. Invertase is an attractive enzyme for this type of analysis because it converts sucrose into glucose, but it’s difficult to attach the enzyme to detection antibodies with chemical approaches. So, Netzahualcóyotl Arroyo-Currás, Jamie B. Spangler and colleagues wanted to see whether producing a fusion protein consisting of both invertase and a detection antibody would work in an assay that would allow SARS-CoV-2 antibody levels to be read with a glucose meter.

The researchers designed and produced a novel fusion protein containing both invertase and a mouse antibody that binds to human immunoglobulin (IgG) antibodies. They showed that the fusion protein bound to human IgGs and successfully produced glucose from sucrose. Next, the team made test strips with the SARS-CoV-2 spike protein on them. When dipped in COVID-19 patient samples, the patients’ SARS-CoV-2 antibodies bound to the spike protein. Adding the invertase/IgG fusion protein, then sucrose, led to the production of glucose, which could be detected by a glucose meter. They validated the test by performing the analysis with glucose meters on a variety of patient samples, and found that the new assay worked as well as four different ELISAs. The researchers say that the method can also be adapted to test for SARS-CoV-2 variants and other infectious diseases.

The authors acknowledge funding from The Johns Hopkins University School of Medicine, the Emerson Collective Cancer Research Fund and the National Institutes of Health.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook | LinkedIn | Instagram



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.2c02537

Article Title

Antibody−Invertase Fusion Protein Enables Quantitative Detection of SARS-CoV‑2 Antibodies Using Widely Available Glucometers

Article Publication Date

8-Jun-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Insights into Drug-Facilitated Sexual Assault Cases

November 4, 2025

Globalizing Vignette Learning with Language Models

November 4, 2025

Revolutionary Laparoscopic Technique for Resolving Childhood Constipation

November 4, 2025

Neutrophil Extracellular Traps Boost LDHA in Colorectal Metastasis

November 4, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights into Drug-Facilitated Sexual Assault Cases

Pest Dynamics and Climate: Sustainable Solutions for Kagera Sugar

Globalizing Vignette Learning with Language Models

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.