• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A giant panda’s gut bacteria help it remain chubby while on a bamboo diet

Bioengineer by Bioengineer
January 18, 2022
in Biology
Reading Time: 4 mins read
0
Snacking panda
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The giant panda feeds exclusively on fibrous bamboo, yet they still manage to stay chubby and healthy. In a study published January 18 in the journal Cell Reports, researchers reveal that shifts in the bear’s gut microbiota in the season when nutritious bamboo shoots become available helps the herbivorous bear gain more weight and store more fat, which may compensate for the lack of nutrients in seasons when there are only bamboo leaves to chew on. 

Snacking panda

Credit: Fuwen Wei

The giant panda feeds exclusively on fibrous bamboo, yet they still manage to stay chubby and healthy. In a study published January 18 in the journal Cell Reports, researchers reveal that shifts in the bear’s gut microbiota in the season when nutritious bamboo shoots become available helps the herbivorous bear gain more weight and store more fat, which may compensate for the lack of nutrients in seasons when there are only bamboo leaves to chew on. 

“This is the first time we established a causal relationship between a panda’s gut microbiota and its phenotype,” says first author Guangping Huang, at the Institute of Zoology, Chinese Academy of Sciences. “We’ve known these pandas have a different set of gut microbiota during the shoot-eating season for a long time, and it’s very obvious that they are chubbier during this time of the year.”

Many animals experience a seasonal shift in gut bacteria as a result of changes in food availability. For example, certain species of monkeys have different gut microbiota in summer when they get to eat fresh leaves and fruits compared with that in winter when they feed on tree bark. A similar shift is also observed in the Hadza people, who are modern hunter-gatherers living in Tanzania, as the type of available food changes throughout the year.

The team, led by Fuwen Wei at the Institute of Zoology, has been studying wild giant pandas living in the Qinling Mountains in central China for decades. For most time of the year, these animals feed on fibrous bamboo leaves. But during late spring and early summer, they get to enjoy newly sprouted bamboo shoots that are rich in protein.

Wei says that these wild pandas have a significantly higher level of a bacterium called Clostridium butyricum in their gut during the shoot-eating season compared with during the leaf-eating season. To investigate whether the change in gut microbiota could affect a panda’s metabolism, the team performed a fecal transplant of panda feces collected in the wild to germ-free mice. Then they fed the mice with a bamboo-based diet that simulated what pandas eat for 3 weeks.  

Researchers found that mice transplanted with panda feces collected during shoot-eating season gained significantly more weight and had more fat than mice transplanted with feces from leaf-eating season despite consuming the same amount of food. Further analysis revealed that the metabolic product of C. butyricum, butyrate, could upregulate the expression of a circadian rhythm gene called Per2, which increases lipid synthesis and storage. The seasonal changes of the gut microbiota of pandas synchronize host peripheral circadian rhythm for modulating lipid metabolism.

“For endangered and vulnerable wild animals, we can’t really run tests on them directly. Our research created a mouse model for future fecal transplant experiments that can help study wild animals’ gut microbiota,” Huang says.

Next, the team plans to map out more microorganisms in the panda’s gut and find out about their roles in affecting the animal’s health. “Causal research of host phenotype and gut microbiota in wild animals is just beginning. Identifying what bacteria are beneficial for animals is very important, because one day we may be able to treat some diseases with probiotics,” Huang says.

·###

This work was supported by grants from the National Natural Science Foundation of China and the Strategic Priority Research Program of the Chinese Academy of Sciences.

Cell Reports, Huang, Wang, and Li et al.: “Seasonal shift of the gut microbiome synchronizes host peripheral circadian rhythm for physiological adaptation to a low-fat diet in the giant panda,” https://www.cell.com/cell-reports/fulltext/S2211-1247(21)01707-1  

Cell Reports (@CellReports), published by Cell Press, is a weekly open-access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. Visit: http://www.cell.com/cell-reports. To receive Cell Press media alerts, contact [email protected].



Journal

Cell Reports

DOI

10.1016/j.celrep.2021.110203

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Seasonal shift of the gut microbiome synchronizes host peripheral circadian rhythm for physiological adaptation to a low-fat diet in the giant panda

Article Publication Date

18-Jan-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Boeremia exigua: Fungal Pathogen of Ginseng

Decoding Boeremia exigua: Fungal Pathogen of Ginseng

November 1, 2025
blank

Alveolar Macrophages Predict TST/IGRA Conversion Resistance

November 1, 2025

Intestinal Parasites in Punjab’s Rock Pigeons Unveiled

November 1, 2025

Rj4 Immunity Network Limits Soybean-Rhizobia Symbiosis

November 1, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Parental Stress in Neurodevelopmental Disorders: Key Factors Revealed

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

Boosting Lettuce Yields with Steel Slag Compost Teas

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.